
Elliptic Curves and the
Perspective 3-Point Problem

A talk for the 2019 MAA Iowa Section Meeting

Michael Q. Rieck, Ph. D.
Drake University

§ Soon after the invention of the camera, a mathematician named Johann August
Grunert posed and solved a mathematical problem that became foundational to
the area of “photogrammetry,” and later of use in the area of “camera tracking”

§ The problem has come to be known as the “Perspective 3-Point Pose Problem,” or
the “Perspective 3-Point Problem,” or just the “P3P Problem”

§ The idea is simple: given a photograph that contains the images of three known
points in space, is it possible to determine the location of the camera?

§ The three known points have come to be called the “control points,” and of
course, the distances between these points is known

§ However, the distances from the camera to the control points are unknown, and
determining these is the tricky part of the P3P problem

§ The triangle whose vertices are the control points is called the “control points
triangle,” and the plane containing it is called the “control points plane”

§ A line connecting the camera position to a control point is called a “view line”

§ It is assumed that the angles between pairs of view lines are known
§ This is reasonable when dealing with a simple “pinhole camera” model
§ Using the Law of Cosines, Grunert approached the P3P Problem as a system of

three quadratic equations in the three unknown distances
§ His solution, as well as a number of later solutions, reduces the system to a

single polynomial equation in just one unknown, with coefficients that depend
on the known parameters of the P3P Problem (triangle side lengths, etc.)

§ In Grunert’s case, the unknown is the square of the ratio of two of the unknown
distances, and the polynomial has degree four, i.e. a quartic polynomial

§ Since a quartic polynomial can have up to four positive real roots, for given
values of the P3P Problem parameters, there may be up to four solutions to the
P3P Problem, i.e., up to four possible positions of the camera

§ In the 20th century, the P3P Problem was shown to be equivalent to finding
the intersection of two quadratic curves in the real projective plane

§ This observation has been exploited in the solution methods of
Finsterwalder, Grafarend, and more recently, Persson and Norberg

§ Wikipedia claims that the method of Persson and Norberg, which is known
as “Lambda Twist,” “achieved state of the art performance in 2018 with a 50
fold increase in speed and a 400 fold decrease in numerical failures”

§ I was recently able to recast the P3P Problem as an equivalent problem
involving four great circles on the unit sphere, x2 + y2 + z2 = 1

§ This led me to develop a method that focuses first of determining the
directions of the sidelines of the control points triangle, rather than the
distance from the camera to the control points

§ My method is noticeably more accurate than Lambda Twist, by at least
one order of magnitude, in most cases, but it is about 60% slower

§ I implemented C code for testing both methods, which is available at

github.com/mqrieck/EllipticCurveP3P

§ My student, Pawel Barnas, was helpful in developing test programs in
Python that tested the C code I wrote; he ran tests and collected data too

§ The spherical interpretation of the problem is rather interesting in its own
right, and my approach to solving it relies on a spherical analogue of a
classical “slide puzzle” in the plane

§ Let us first look at this classical problem

§ Problem: Assuming that a triangle is allowed to move around on the plane, but with
two of its vertices constrained to stay on two different non-parallel lines, describe the
curve followed by the third vertex

(Guesses ???)

§ Solution: The third point will trace out an ellipse

§ Even if the triangle is degenerate (interior angles now being 0 or p), so we are now
basically sliding a line segment, the curve traced will still be an ellipse

§ This is the basis of an ellipse-drawing tool known as the “Trammel of Archimedes”

https://en.wikipedia.org/wiki/Trammel_of_Archimedes

§ In my spherical analogue, lines are replaced with great circles, and line
segments are replaced with arcs of great circles

§ We will only need to be concerned with the spherical analogue of the triangle-
sliding problem in the special case where the triangle is degenerate

§ Thus, the three moving points will lie on a moving great circle, but these points
must maintain their separation distances from each other, as this great circle
moves around the sphere

§ Two of these three points are also constrained to lie on fixed great circles
§ Again, we are interested in the path traced out by the third point while sliding

the moving circle, subject to the two constraints
§ The resulting curve will no longer be described by a quadratic equation, but

rather, it requires a quartic (fourth degree) equation
§ The next figure shows the setup, but does not show the curve traced by the

third moving point

Here is the projection onto a plane of two of the possible quartic curves on the sphere:

Without loss of generality, we can rotate the sphere and arrange for the quartic
equation to only involve the x and y coordinates (not z) and some constant
parameters that will not be explained here (unless asked):

§ The sliding great circle problem is then easily translated from a problem on the
unit sphere to a problem in the real projective plane

§ Here we use the standard model of the real projective plane, identifying its
“points” with the lines through the origin in 3-dimensional Cartesian space

§ Each such line intersects the unit sphere in two antipodal points, and so we may
also identify such a pair of points on the sphere with a single “point” in the
projective plane

§ Under this identification, great circles on the unit sphere are identified with
“lines” in the projective plane

§ The quartic curve on the sphere that resulted from the sliding great circle
problem then corresponds to a quartic curve in the projective plane

§ It can be shown that this curve has two singularities, where the curve is self-
crossing

§ It can also be shown that it has “genus one” (definition omitted unless asked)

§ Furthermore, by making a suitable projective transformation, an affine version of the
resulting curve has an equation in the following form:

!"#"$" − &"#" − '"$" +)" − 2+"#$ = 0

§ Via a simple birational transformation, the above can then be put into the Legendre
form .2 = (1 - /2)(1 - 02/2) , where . and / are variables, and 0 is a constant

§ This is a classical “elliptic curve”
§ Specifically, take

1 = (ad+bc+e2) (ad+bc-e2) (ad-bc+e2) (ad-bc-e2),
2 = (a2d2 + b2c2 - e4 + 11/2) / 2a2b2 ,
0 = ab 2 / cd ,
/ = x / 21/2 ,
. = [(a2x2 - c2)y - e2x] / cd

§ The family of quartic curves described at the top of the previously slide
also includes curves used in cryptography such as “Edwards curves”

§ The j-invariant, an important and well-known invariant of isomorphic
elliptic curves, can be computed for the curve on the previous slide:

! = 16 %4'4(4 + 14%2'2+2,2(2 + +4,4 3

%2'2+2,2(2 (%2'2(2 − +2,2)4

= 16 %4,4 + '4+4 + 18 + 14%2'2+2,2 − 2%2,212 − 2'2+214 3

%2'2+2,232

§ The terminology “elliptic curve” is a little strange, and inconsistently used
in the literature

§ It is not an ellipse! (The name is an unfortunate historical accident)
§ The most generous definition is an algebraic curve of genus one
§ The family of curves considered here fits this definition
§ In any case, these curves are birationally equivalent to non-singular cubic

curves
§ Such non-singular cubic curves constitute a more restricted class of

curves that is often used to give a more restricted definition for “elliptic
curves”

§ There are even more restricted definitions
§ Often one is also required to specify a “rational point” on the curve, in

order to impose an abelian group structure on the curve
§ Such additional structure will not be of concern here, though perhaps it

should be!
§ Let us now return to the P3P problem, and work with a Cartesian

coordinate system that places the camera at the origin, and that agrees
with the actual distances

§ Locating the control points in this “camera-centric” coordinate system is
sufficient for solving the P3P problem, where the determination of the
camera’s position in physical space is the objective

§ The essential thing is to find the distances between the camera and the
control points, after which, everything becomes simple

§ So, working in the camera-centric coordinate system, assume, w.l.o.g.,
that the view lines are known, a priori

§ It will be helpful to refer to any plane containing two view lines as a
“containment plane,” and these are then also presumed to be known

§ Of course, the distances between the control points are known, and so
we may assume that the interior angles of the control points triangle are
also known

§ Although the positions of the control points are unknown, we can
imagine parallel translating the three sidelines of the triangle, so that the
translated lines become incident with the origin (the camera position)

§ Accordingly, these three unknown lines will be called the “translated
sidelines”

§ Restrict attention now to lines and planes that go through the origin
§ We have the three known view lines
§ We have the three unknown translated sidelines
§ We have the three known containment planes
§ Each containment plane contains two view lines and one translated

sideline
§ We also have the unknown plane containing the translated sidelines
§ Now, notice what happens when these geometric objects are intersected

with the unit sphere

§ Each view line corresponds to a pair of known antipodal points on the
sphere (green points in the upcoming slides)

§ Any two of these pairs gives four points lying on the known great circle
that corresponds to a known containment plane (black circles in
upcoming slides)

§ Each translated sideline corresponds to a pair of unknown antipodal
points on the sphere (blue points in upcoming slides)

§ These points, for all three translated sidelines, lie on an unknown great
circle (blue circle) that corresponds to the plane containing the three
translated triangle sidelines

§ A fact that might not be obvious at first is that the distances between the
blue points (corresponding to the translated sidelines) along the great
circle containing these points, are actually known

§ Why?
§ These distances are just the angles between the sidelines of the control

points triangle, i. e. the interior/exterior angles of this triangle
§ The upshot of all this is that the P3P problem can now be reformulated

as follows

§ Given three fixed great circles on the unit sphere (the black circles), find
three pairs of antipodal points (the blue dots) such that
• each pair of points lies on a corresponding fixed great circle
• all of these points also lie on a common great circle (the blue circle)
• the distances between these points on this latter great circle have

certain prescribed values

§ Solving this means identifying possible translated sidelines (for some P3P
solution) and therefore also identifying the plane containing all of them

§ Such a plane is parallel to the plane containing the possible positions of
the control points (for some P3P solution)

§ By solving a linear equation, it becomes easy to locate this latter plane,
and thereby obtain one of the solutions to the P3P problem

§ Now, let us go back to solving the problem on the unit sphere
§ If we relax one of the constraints in the problem, by no longer requiring

the third pair of antipodal points to lie on the third fixed great circle, then
the (blue) great circle that contains the six (blue) points becomes free to
slide around

§ Indeed, we are now looking at the sliding problem considered earlier,
where the path of one of the points in the third pair of antipodal points
was the issue

§ As already asserted, this path describes a certain quartic curve
§ So, we simply need to ask where this quartic curve intersects the third

fixed great circle, and thereby solve the P3P problem

§ When this question is translated from the unit sphere to the real
projective plane, we find that we are simply looking for the intersection
of a (genus-one) quartic curve and a line!

§ That is easy to solve
§ This thinking in the projective plane serves as the basis for the P3P-solver

algorithm that was implemented and tested against the Lambda Twist
algorithm

§ I will close by briefly discussing the results of that testing
§ The “attack angle” made a big difference
§ By this, it is meant the angle between the line through the origin and the

circumcenter of the triangle, and the line normal to the triangle, through
its circumcenter

§ The simulations involved taking a given triangle with vertices on the unit
circle in the xy-plane, randomly rotating it in 3 dimensions about the
origin, randomly lifting it along the positive z direction, and then
randomly rotating about the origin again

§ Then the vertices of the triangle, treated as control points, were observed
from the origin, and the P3P-solver algorithms were applied to estimate
the distances to the control points

§ The first rotation was restricted to produce a restricted range of attack
angles

§ The lifting along the positive z direction was also restricted to a certain
range of elevations

§ The data collected and reported in the next few slides are for two
different triangles, an obtuse triangle and an acute triangle (fairly close to
equilateral)

§ For each of the plots in these slides, ten million random trials were used
§ Average errors and their standard deviations, minimum and maximum

errors, and execution times were recorded
§ As long as this attack angle was not close to a right angle, the method

based on elliptic curves had an average error that was at least one order
of magnitude better than that of the Lambda Twist method

§ The minimum error, taken over a large number of trials, was similarly
better

§ The execution time was about 60 percent worse

§ Average error distributions when attack angle was between 0 and 30 degrees, and
elevation of triangle was between 10 and 20 (for two different triangles):

§ Average error distributions when attack angle was between 0 and 30 degrees, and
elevation of triangle was between 100 and 200 (for two different triangles):

§ Average error distributions when attack angle was between 30 and 60 degrees, and
elevation of triangle was between 10 and 20 (for two different triangles):

§ Average error distributions when attack angle was between 30 and 60 degrees, and
elevation of triangle was between 100 and 200 (for two different triangles):

Thank You

Questions?

