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Abstract

Direct and fairly simple geometric criteria are proved to be necessary for the Perspective
3-Point (P3P) Problem to have a real solution point. This is so under the assumption that
the three control points are at the vertices of an acute triangle. Collectively, these criteria
appear to be sufficient as well, based on substantial experimental evidence. Proving the
necessity of some of the criteria does not involve the acute triangle assumption, and so
these are required for obtuse and right triangles as well. While motivated by the P3P Prob-
lem, the results are actually concerned with various constraints among six of the angles
that occur in a tetrahedron. Therefore, the results likely have other applications.
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1 Introduction and Main Results

Fix an acute triangle AABC in ordinary three-dimensional real affine space, equipped with
the standard metric. Following common practice, ZA, /B and ZC will denote the interior
angles of AABC. All angles will be measured in radians. The side lengths of AABC opposite
the vertices A, B and C will be denoted a, b and c, respectively.

Consider any point P in this space that is not coplanar with A, B and C. Together, A,
B, C and P form the vertices of a tetrahedron. The angles Z/BPC, ZCPA and ZAPB will be
denoted o, B and v, respectively.



For convenience, we now equip the three-dimensional real space with a new Cartesian
coordinate system (xyz) having the following properties:

* The new coordinate system respects angles in the space, but not necessarily lengths;
* The three triangle vertices A, B and C have coordinates (cos¢y,sind;,0), (cosd,,sin0,,0)
and (cos 03, sin 03, 0), respectively, for angles ¢y, ¢, and ¢5 satisfying ¢; + ¢, +¢3 = 0.

It is straightforward to obtain such a coordinate system, and this imposes no restrictions
on the problem being addressed in this paper. If one begins with the standard coordinate
system for the space, then the desired coordinate system can be obtained through a sequence
of translations, scalings and rotations, as follows.

Start by translating and rotating so as to put the triangle into the xy-plane. Then find the
circumcenter of the triangle, possibly by intersecting two of the perpendicular bisector lines
for the sides of the triangle. Translate so that the origin becomes the circumcenter. Compute
the circumradius, i.e. the distance from the origin to any of the vertices A, B, C. Rescale all of
space so that the circumradius becomes one.

The three vertices will now be at positions (cosWyy,sinyy,0), (cosyy,siny,,0) and
(cosys, sinys,0), for some angles i, Wy, and 3. For j =1,2,3, let ¢; = y; — (W1 +y2 +
y3)/3. By rotating by an angle (Y + W, + y3) /3 about the z-axis, the vertices will now have
positions (cos¢y,sindy,0), (cosd,,sind,,0) and (cos 3,sind3,0). Note that ¢; + ¢, + 3 = 0.

Also, notice that there are generally six possibilities for the vertex coordinates. To see this,
notice that adding multiples of 27 to the y angles, produces, modulo 2, three possibilities for
the ¢ angles. Modulo 27, these can be obtained from each other by adding the same amount
+27/3 to each of the ¢ angles. Additionally, all of the ¢;’s can be negated, resulting in the
triangle being reflected about the x-axis, which yields another acceptable arrangement.

Computing the following quantity D is important, but which of the six triangle positions
is used is unimportant, as can be inferred from Lemma 8 (in Section 3). Here are steps that
can be used to compute D:

X1 =co0s;, x; =cosd,, x3 =cosds,

Y1 =sin@;, y» =sin¢y, y3 = sin¢s,

Xg=Xx1+X2+x3,yu =yY1+Yy2+y3,

Cop = cosacosfPcosy,

Cy = cos’a, Cy = cos? B, C3 = cos?,

So=1-Cp, 81 =1-C,8=1—-Cs,8 =1-C;, (1)
H=8+5+S5—25,

L=2[yuSo+ x1—1)y1S1+ (x2—Dy2S2+ (x5 —1)y383 ],
R=2[(14xy)So— (x1 + 1)x1 81 — (x2+ 1)x282 — (x5 + 1)x3 S3],
K=—H-R,

D= (K*+L*+12HK +9H?)> —4H (2K + 3H)>.

These quantities have geometric significance that is discussed in [1] and [2]. For instance,
(x#,ym,0) are the coordinates of the orthocenter of AABC.

The problem of interest in this paper is the determination of the limitations that the angles
/A, /B and ZC place on the angles o, B and y. While this is an easily stated and geometrically
compelling problem, the solution turns out to be surprisingly complicated. In the language of



a well-known camera-tracking problem, the “Perspective 3-Point (P3P) Problem,” we are here
asking about criteria for the existence of a real-valued solution point to this problem, using A,
B and C as the “control points,” and prescribed values for the “viewing angles” o, P and .

The P3P problem was introduced quite a long time ago, in [3], and various methods for
obtaining solutions are presented in [4]. For specified values for ZA, /B, ZC, a,  and v, the
number of real solution points can be determined using the methods in [5] and [6]. However,
these methods mostly involve complicated algebraic elimination methods that only shed some
light on the inherent geometric nature of the problem. Admittedly, the geometric portion of
[5] does focus on the same toroid surfaces that are also seen in the present paper and in [2],
but the important surface called the “companion surface to the danger cylinder (CSDC)” in
these latter papers is not mentioned in [5].

The following claim lists several rather simple conditions on ZA, /B, ZC, a,, B and 7y (all
assumed to be between 0 and 7) that seem to be necessary for the existence of a real solution
point to the P3P Problem, that is, for the existence of a point P that yields a tetrahedron
ABCP as described above. Moreover, experimental evidence strongly suggests that these
requirements, taken together, are also sufficient for the existence of such a point P.

Conjecture 1. Using the above setup, where triangle AABC is acute, the following are
necessary conditions on the possible values of /A, /B, ZC, a, B and v, for the existence of a
suitable tetrahedron ABCP, and together, these conditions are sufficient:

I a<B+y,B<y+a,y<a+p,oa+p+y<2m;
2. BHy—o<2(LB+Z4C), y+o—B<2(LC+LA), o+ PB—v<2(LA+ 4B);
3. JA+B+y<2n,a+/B+y<2mn,o0+p+2C<2m;

4. o< /A — cosZCcosP+cosZBcosy > 0, and suitable permutations of this;
5. o< ZA — B <max{4B,ZC+ a}, and suitable permutations of this;

6. (D>0ANa<ZA) = (B< 4BV y<ZC), and suitable permutations of this;
7. D>0 = (o< ZAVa>n—LZAVPB<LBVPB>n—4BVY<ZLCVYy>n—ZLC).

“Suitable permutations” means permuting the symbols “A”, “B” and “C”, and permuting the
symbols “a”, “B” and “y”, together, in the same way. The right arrows are logical implica-
tions. Of course, an implication p — ¢ is logically equivalent to the disjunction —pV gq. (“A”,
“V” and “—” are used here for the basic logical operations of conjunction, disjunction and
negation.)

There is some redundancy among the items listed in the conjecture. In particular, there is
a simple connection between the first three items, as follows.

Proposition 2. Items I and 2 of Conjecture 1, taken together, imply Item 3.

Proof. Assume Items 1 and 2. If a0 < ZA, then ZA+B+7y< ZA+o+2(n— LA) =2n+ 0 —
/A <2m. If, instead, o0 > ZA, then ZA+B+7 < o+ P+7y < 2w In either case, ZA+ B+ <
2w, and by symmetry, Item 3 follows.

O



Although Proposition 2 shows that Item 3 is superfluous, it was included in the list in Con-
jecture 1, partly because it has an interesting geometric interpretation, as seen in the proof of
Theorem 3, in Section 2.

The items in the conjecture fall into three camps, based on the nature of the analysis used
to discover them. We will refer to Items 1, 2 and 3 as the “sphere-based rules;” we will refer
to Items 4 and 5 as the “toroid-based rules;” and we will refer to Items 6 and 7 as the “deltoid-
based rules.” The necessity of Items 1, 3, 4 and 5 have already been proved in [7], though this
paper is as yet unpublished. The necessity of Items 4 and 5 (the toroid-based rules) must be
considered conjectural until that paper is reviewed and published, or some other published,
peer-reviewed paper proves these claims. Proofs of the necessity of Items 1, 2, 3, 6 and 7 are
provided in the current paper. A proof of the sufficiency claim seems far out of reach, but this
claim has held up under extensive testing; see Section 5. Here now are the principal claims
that will proved in this paper.

Theorem 3. The sphere-based rules, i. e. Items 1, 2 and 3 in Conjecture 1, are necessary
conditions for the existence of a suitable tetrahedron ABCP.

Theorem 4. The deltoid-based rules, i. e. Items 6 and 7 in Conjecture 1, are necessary
conditions for the existence of a suitable tetrahedron ABCP.

A proof of Theorem 3 is provided in Section 2 of the present paper, and involves some
interesting geometry. Theorem 4 is much harder to prove. The deltoid-based rules are quite
obscure without the benefit of insights from [2]. However, Theorem 4 is proved in Section 4 of
the current paper. Prior to this though, much of the reasoning of [2] is reproduced in Sections
3 and 4. One can already get some sense of the phrase “deltoid-based rules” by noting that
when the above formula for D is regarded as a homogeneous polynomial in three variables, H,
K and L, and set equal to zero, one obtains the homogeneous equation for a standard deltoid
curve.!

Section 5 describes a couple C++ programs that have been used to test Conjecture 1,
and to make a strong case for it. Some compelling visual results from Mathematica are also
discussed. Web addresses for the source code are provided there.

2 The Sphere-based Rules

There are actually two very different ways to prove the necessity of the sphere-based rules,
i.e. Theorem 3. There is what might be called an “algebraic proof” and a “geometric proof.”
Only the latter will be presented rigorously in this paper.> Neither of the two proofs makes use
of the assumption that the triangle AABC is acute, and so the sphere-based rules are actually
necessary conditions for arbitrary triangles AABC. Here now is the geometric proof.

Proof of Theorem 3. Begin with an arbitrary tetrahedron ABCP. Consider a small sphere cen-
tered at P such that the other vertices are outside this sphere. For the purposes of this proof
only, rescale three-dimensional real space so as to make the sphere a unit sphere .S. The plane
through P that is parallel to the plane containing AABC intersects § in a great circle £. The

!This form of the equation is essentially due to Bo Wang.
2The former is available from the author upon request.



Fig. 1: Setup for the sphere-based rules

three rays from P that pass through A, B or C, each intersect S in a unique point. Accord-
ingly, call these points A, B’ and C’. As points on S, they are all on the same side of E (a
hemisphere).

Consider the great circle (; that passes through B’ and C’, the great circle ¢ that passes
through C" and A’, and the great circle C; that passes through A’ and B'. Notice that the great
circle distance (along () between B’ and C’ is o, the great circle distance (along () between
C’ and A’ is B, and the great circle distance (along () between A’ and B’ is y. Also, ( is on
the plane containing B, C and P. Similarly for &, and G;.

C intersects E in two antipodal points. Following C; from B’ to C’, and continuing until
we reach E, call this intersection point D. Similarly, following C; from C’ to B', and contin-
uing until we reach E, call this intersection point D'. So again, D and D’ are antipodal points
on the sphere. Also, the directed line segment from D’ to D is parallel to the directed line seg-
ment from B to C. (Both are in the plane PBC, and the plane containing ‘ is parallel to the
plane ABC.)

Similarly define points E and E’, using G, and F and F’, using G;. It is then straightfor-
ward to check that great-circle distances between D and E’, between E’ and F, between F and
D', between D’ and E, between E and F’, and between F’ and D are respectively, ZC, ZA,
/B, ZC, /A and Z/B. Since A’, B’ and C’ lie in the same hemisphere, they form the vertices of
a proper spherical triangle, whose side lengths are o, B and . Item 1 in the theorem follows
immediately from this fact. See Figure 1.

Now, C'. D' and E are also the vertices of a proper spherical triangle. Moreover, the side
connecting C' and D’ contains B’, and side connecting C’ and E contains A’. Let o+  be the
length of the side connecting C’ and D', and let 3 + € be the length of the side connecting C’
and E (3,€ > 0). The side connecting D' and E has length Z/C. So, o+ B+ ZC < (. +8) +
(B+€) + £C < 2m. This proves the third inequality in Item 3, and the other two inequalities
are similarly obtained. By considering two paths on the sphere connecting D’ and E, we easily



Fig. 2: Companion surface to the danger cylinder

obtain ZC < y+3+¢. Therefore, o+ —y< a+P—(LC—0—¢) = (0+0)+ (f+¢)—LC<
2n—2/C =2(/LA+ ZB). This and similar reasoning yields Item 2 in the conjecture.
O

Note that, in the proof, it is possible for ZC to be less than 7. Figure 1 shows an example
where ZA < a.

3 The Danger Cylinder and its Companion Surface

Going forward, we will always assume that the triangle AABC is acute. It has long been under-
stood that a P3P solution point P in space, with coordinates (x,y,z), is a repeated solution
point if and only if it is on the circular cylinder that includes the circumcircle of the control
points triangle. This cylinder is traditionally refered to as the “danger cylinder.” Using our
setup, it is the cylinder whose equation is x*> +y? = 1.

It is beneficial to understand the answer to a more subtle geometric question, as follows.
For fixed control points, a generic point P in space, with coordinates (x,y,z), is a solution
point to the P3P Problem for unique parameter values, o, B and ¥ (namely, oo = ZBPC,
B = ZCPA and Y= ZAPB). In this way, we might say that P determines an “instance” of the
P3P Problem.

Assuming that P is not on the danger cylinder, we now ask for a description of the surface
that P must lie on in order that its instance of the P3P Problem have a repeated solution point



(which will not be P). This surface was first described in [1], and examined further in [2],
where it was given the name, “the companion surface to the danger cylinder (CSDC).” Along
with DC and three double toroids, this surface plays an important role in partitioning space
into various regions. Points in the same region have instances of the P3P Problem that have
the same number of solution points.

Moreover, the region containing a point P also determines which regions contain the other
solution points for P’s instance of the P3P Problem. [2] deals with this in some detail, at least
for the case where the control points triangle is acute. See Theorem 4 there. This is a rather
complicated, but interesting, story, the essence of which will be largely reconstructed in this
and the next sections of the current paper.

If one ignores the toroids, and only uses DC UCSDC to divide space into regions, then
points in the same region have instances of the P3P Problem that have the same number of
(real) “weak solution points.” By this is meant points that either are themselves solution points
or are “weakly related” to solution points. (See below.)

Figure 2 shows what CSDC looks like for a typical acute control points triangle AABC,
in the upper half space (z > 0). The lower half space (z < 0) portion is just the reflection of
this about the xy-plane. In order to describe CSDC, a few results from [2] and [8] are now
reproduced here, along with shorter proofs. For better motivated discussions of some of this
material, consult these two documents.

Following the practice used there, the xy-plane will here be identified with the complex
plane by setting { = x+iy. The control points / triangle vertices (A, B, C) are thus points {; =
xj+1iy; in the complex plane with |{;| =1 (j = 1,2,3). Additionally, since ¢; + ¢+ ¢3 =0,
we have C1C2C3 =1.

LetZ=z%Letc; =cosQ, ¢, = cos and ¢3 = cosY. Let dy, d, and d5 denote the distances
between control points, specifically, d; = |3 — G|, d» = |81 — &3], d5 = |&o — C4|. It will also
be useful to define 7; = S; — 2d7 Sy / (d} +d; +d5) (j =1,2,3), where Sy, S5, S3 and Sy
were defined in Section 1. Three other quantities used in [2] and [8] will be needed here too:

H =m0 =T+h+T = Si+5+5-25
= 1—C%—C%—C%+2C1C2C3,
CH = xg+iyy = (x1+xz+x3)+i(y|+y2+y3),

o= {(G+20)T + (B +20) D+ (B +28)T3} /H.

2

A cubic polynomial that has quite a useful role, expressed in terms of an indeterminate T,
is the following: o
PO =7 -4+ L1, (3)

Lemma 5. The discriminant of the polynomial p(7T) is

DL T 4G+ + 180G - 27,

Moreover, this quantity vanishes if and only if the P3P problem has a repeated solution, for
the specified parameters.

Proof. D is easily verified to be the discriminant of p(t), using the formula for the discrim-
inant of a general cubic polynomial. In his solution to the P3P Problem, S. Finsterwalder



introduced a certain cubic polynomial; see Equation (14) of [4]. It is known that Grunert’s
system of equations has a repeated solution if and only if Finsterwalder’s cubic polynomial
has a repeated root. This, of course, is so if and only if the discriminant of this polynomial is
ZEero.

It will now be shown that Finsterwalder’s cubic polynomial can be transformed, via a
MGobius transformation (with constant coefficients), into the polynomial p(t) times a nonzero
constant, and vice-versa. This will establish that the discriminant of Finsterwalder’s cubic
polynomial is a nonzero constant multiple of the discriminant of p(t).

The Mobius transformation is simply this:

p oo GG—8) G-l
GG -8) Git—1

“)

and hence

_ GG —8)A-Gi(6—C)
GG (G -0)A—(6-G)

Now, Finsterwalder’s cubic polynomial is

T

GN+HN+IA+T

with G =3 (3T —d3T3), H = d5(d3 —d}) Ts +d3 (d5 + 2d1) Do, 1 = d3(d5 — d3) T + i (d] +
2d3)T, and J = d}(d;T> — d3Ty). Upon substituting the formula for A in terms of T, and
making other evident substitutions such as d? = ({3 —$) (G — &), ete., §;=1/C; (j=1,2,3)
and {; = 1/(8,83), it is straightforward (though a bit tedious) to transform Finsterwalder’s
polynomial to p(t) times a nonzero constant. O

Further reasoning and motivation for the Mobius transformation is provided in [8].

Lemma 6. * For a given point P in space, with coordinates (x,y,z), consider the associated
instance of the P3P problem (for which P is a solution point). Then,

&= =20+ (L~ D)(E ~CLul~C+Cn) /2. (5)

Proof. Let {; denote the right side of the equation in the lemma, and so, we need to prove
that {; = {;. Let p(t) be as before, and let ¢(t) = ©° — ;7> + [T — 1. It suffices to show
that the two cubic polynomials p(t) and ¢(t) are equal. To accomplish this, it will be shown
that p(C;) = ¢(¢;) (j =1,2,3). Clearly p(0) = ¢(0) = —1. Then, the fact that the two cubic
polynomials agree for four different values of the argument T will imply that these polynomi-
als are actually the same. The equation (d2T; —d3T3)/H = (; p(C1)/ (&2 — C3) can be checked
directly by expanding each side to show that they have a common expression in terms of {;,
2. G5, T, T5 and T5.

Because its circumradius is one, the square of the area of the control points triangle AABC
is d?d3d3 /16, and so the square of the volume of the tetrahedron having this triangle as a

3This is Theorem 1 in [2].



face, and the point P as its opposite vertex, is d7d5ds Z / 144. The parallelepiped having the
segments PA, PB and PC as edges thus has squared Volume did3d3Z /4. However this must

also equal the square of the Gramlan determinant associated the vectors PA ﬁ and I?‘
which equals Hr}r3r3, where 12 = ({ — £ ) (€ — ;) +Z is the squared distance between P and
A, etc. Therefore, H = d}d3d3 Z | (4r}r3r3).

The Law of Cosmes implies that S| =1 —cf = 1— (B3 +r3 —d})?/(4r3r3) = (2131 +
2d7r3 +2diri — d} — ry — r}) /(4r3r3), and similarly for S, and S5. Now, (d3T, — d3T3) /H =
(d3S,— d§S3) JH = 4r2r3r3(d3Sy — d3S3) / (did5d; Z), which can now be expanded and shown
to equal £1g(81)/(82 — G). It follows that p(&;) = g(C1). By symmetry, p(G;) = g(&;) and
p(83) = q(Gs). O

Lemma 7. *

When the right side of (5) is substltuted for C;, and likewise for CL: into the formula for the
discriminant D of p(t), the result is Z~* ({{—1)2 P({,C, Z), where P((,C,Z) is a polynomial
in ¢, Cand Z. As a polynomial in Z (with coefficients being polynomials in { and C), it has
degree four.

Proof LetN = Z*D =
227, —AZ(Z}+ 7))+ 1822 2,7, — 27 Z°,

where Z; = Z(; ,Z; = Z(; , and Z is regarded as a real variable. Thus, Z;, Z; and N can be
expressed as polynomials in {, { and Z. As a polynomial in Z, N has degree 4.

If we momentarily set { = 1/, we find that Z; = Z(£*> —2)/, and Z; = Z(1 - 203) /2,
resulting in N = 0. Therefore, {C—1 is a factor of N (no longer using the assumption that
£=1/0. B

Now, following common practice in complex analysis, treat Z; and Z; as functions in
independent variable {, { and Z. (A new variable could be substituted for { here if desired.)
Likewise, treat N as a function in independent variables Z;, Z; and Z. Direct computations
show that when { = 1/, we get

| 042204 Tt-1

T @

Zr|  _ —(1+22)8 + 8 - Cul+1

I8 C=1/¢ S ’
| (40
il &

and | _AZ+E)

DA S ¢

4This is part of Lemma 4 in [2]



If we now regard N as a function of {, Z and Z, we obtain, by the chain rule,

W,

K lgorg
By symmetry,

T

9 le-1/c
It follows that ({€ — 1) is a factor of N.

O
Lemma 8. N D
@ — ? e ﬁ’

where N is as in the proof of Lemma 7, and D is as in (1), in Section 1. Assuming that Z # 0
(i.e. P is not in the xy-plane), the signs of ‘D, N and D are equal (-1, 0 or +1). Moreover, D is
invariant under multplying each of &1, Co, G and § by €*™/3, or multiplying each of them by
e~ 23 _ It is also invariant under conjugating each of ¢, &, {3 and §.

Proof. The first equality is just from the definition of N. Now, since Z # 0, it follows that
H # 0. This is so, since, as shown in the proof of Lemma 6, H = d?d3d3 Z / (4r?r3r3), and d;,
dy, ds, 1, r; and r3 are nonzero. It remains to show that D = H*D. o

From (2) we see that H; = (83 +281)T + (G +28)Th + (83 + 283) T5. It needs to be
shown that D = (H(;)* (HC,)? —4H [(HC,)> + (HE)? |+ 18H? (HE,) (HG.) —27H*. Using
the formulas in (1), direct computation shows that L = 2[(x; — 1)y, 71 + (xa — 1)y2Tr + (3 —
1)137%},1? = —Zle —+ 1)x1 T[ —|—(.)C2—|— 1).X2T2—|—(X3—|— 1)X3T3], andH(;L = (C%—FZ(;])T[ —|—(C%—|—
20,)T + (G +283)T3 = K +iL. Using the fact that 71, 7. T3, K and L are real, the claim
concerning D can now be checked by expanding the formulas. This amounts to establish-
ing that (K +iL)*(K —iL)* — 4H [ (K +iL)* + (K —iL)*] + 18H*(K +iL)(K —iL) —27TH* =
(K?+L*+12HK +9H?*)? — 4H(2K +3H)?, which can be checked by expanding.

Finally, the invariance of 2 under the indicated changes to {;, {5, {3, and { is actually a
corollary to Lemma 6. Observe first how {; and {; are affected by the substitutions, and then
use the definition of D in terms of these.

O

CSDC is simply defined to be the surface in (xyz—) space consisting of the points for
which P (L, C,Z) = 0. Together with the danger cylinder ({{ = 1), we obtain all of the points
for which the discriminant 2 of p(t) vanishes. These are the points whose instance of the
P3P Problem has a repeated solution point.

Lemma 9. CSDC is unbounded, and as Z — oo, the orthogonal projection of CSDC onto the
xy-plane approaches the standard deltoid curve.

10



Proof. By Lemma 6, as Z — oo, we see that {; — {2 — 2{, and so D —

(C— 12 [CT -4 +T)+18LC—27).

Thus, in the limit, 9 vanishes when C is on the unit circle, and also when { is on the standard

deltoid curve (given by ngz -4 — 4&3 + 18%C = 27), and nowhere else. The unit circle is
expained by the fact that D vanishes on the danger cylinder. The standard deltoid curve must
likewise by explained by the vanishing of D on CSDC, from which the claim in the lemma
now follows.

O

Lemma 10. CSDC consists of two surfaces CSDCy and CSDC,, each symmetric about the
xy-plane. Their intersection is the circumcircle of the triangle AABC. CSDCy is unbounded,
and except for the circumcircle and three vertical lines on DC, CSDCy lies outside DC. Also,

except for the circumcircle, CSDC is inside the unit sphere, and hence is bounded and inside
DC.

Proof. CSDC is an algebraic surface, given by the polynomial equation P (,,Z) = 0. While
€C— 1 is not a factor of this polynomial, it is a factor (in fact, a double factor) of the poly-
nomial that results from setting Z equal to zero. Thus, the circumcircle is part of CSDC. In
fact, the intersection of CSDC and DC consists of this circle and three vertical lines, namely,
the lines where { = —1 or —e*?™/3_ This can all be seen using the formula for ?({,{,Z) in
Lemma 16 of [2].

By Theorem 3 of [2], the portion of CSDC that is inside DC is also inside the unit sphere,
and hence is bounded. This is CSDC,. By Lemma 9 (here), we infer that CSDCj, is unbounded,
and that for Z > 0, it asymptotically approaches the standard deltoid curve.

O

When two points in space have the same values for o, B and v, and hence solve the same
instance of the P3P Problem, we will say that they are “strongly related.” When two points
are either strongly related, or else have the same value for one of o, B or 7, and supplemen-
tary values for the other two, we will say that they are “weakly related.” Notice that two
points are weakly related if and only if they have the same values for ¢, ¢3, ¢3 and cjcacs.
“Strongly related” and “weakly related” are important equivalence relations. The signifi-
cance of “strongly related” for the P3P Problem is self-evident. The importance of “weakly
related” for the P3P Problem is made apparent in Lemma 11 (the next claim) and Lemma 12
(in the next section).

Lemma 11. Let P be a point in the upper half-space (z > 0).
1. The reflection of P about the xy-plane, in the lower half-space, is strongly related to P.

2. If P satisfies D > 0, then there exists exactly one other point in the upper-half space that
is weakly related to it.
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3. Ifinstead, D < O, then there are exactly three other points in the upper-half space that
are weakly related to P (and to each other).

4. Ifinstead, P is on DC, then, generally, there are exactly two other points in the upper
half-space that are weakly related to it (and to each other), and these are on CSDC.
This is so, except when P is on the circumcircle of AABC or on one of the three special
vertical lines mentioned in Lemma 10, i.e., when P is on DCNCSDC.

Proof. Item 1 is immediately clear from the symmetry of the P3P Problem about the xy-plane.
Items 2 and 3 are just a restatement of Theorem 2 in [2], which is proved there and will simply
be assumed here. Remember that D and D have the same sign, by the Lemma 8 (here).

For Item 4, recall that a generic point on DC serves as a double point for its instance of
the P3P system of equations. This means that infinitesimally small perturbations of the P3P
parameters o, B and 7y that causes D to be (infinitesimally) negative, would result in a P3P
system with two distinct (real) solution points that are infinitesimally close to the original
point. These two points are strongly related, and must be weakly related to two other points
in the upper half-space. These latter two points must be infinitesimally close to two points
on CSDC since D is infinitesimally small. Therefore, by continuity, the original, unperturbed
system must have two solution points on CSDC. However, if P is on both DC and CSDC, then
there will be fewer than two other (distinct) points in the upper half-space that are weakly
related to P.

O

The last two lemmas in this section will be used in the next section to prove Theorem 4.

4 The Deltoid-based Rules

The plan for proving Theorem 4 is to show that certain possible regions of space, designated
below as 110",1017,011% and 1117, do not actually exist. Lemmas 19 and 20 establish this
claim, after which the proof of Theorem 4 quickly follows. To initiate this undertaking, it is
necessary to relay some more of the terminology, notation and results in [2]. While A, B and
C will remain fixed, the point P will move around in space continuously, and as such, will be
called a “particle,” instead of a point. P will thus trace out a continuous curve. Its movement
can be regarded mathematically as a continuous map from an interval into 3-space, thereby
supplying mathematical rigor. However, to gain better intuition of the analysis, thinking about
P moving dynamically is quite helpful. Fixed points can be regarded as stationary particles.

As a particle P moves, its values of a., B, v, ¢1, ¢z and ¢z will change continuously, usually.
However, it will sometimes be necessary to allow P (or another particle) to pass through a
control point (4, B or C). At the moment when this occurs, two of the angles (c, B, ) and
two of the cosines (¢, ¢z, ¢3) will not be defined. As P pass through the control point, the
signs of these two cosines will instantaneously change, because the corresponding angles will
instantaneously be replaced with their supplementary angles.

Certain toroids are important here. The toroid ‘7 consists of all the points in space for
which oo = A. This is the surface obtained by taking the open arc on the circumcircle of AABC
that connects B and C, and that passing through A, and rotating it about the line through B and
C. Note that we are deliberately excluding the points B and C from Z,. Using the coordinate
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Fig. 3: Transition graph for toroidal regions

system from Section 1, this circumcircle is simply the unit circle in the xy-plane. Apart from
the arc that we started with, the toroid Z; stays outside the unit sphere. Let T4 = T4 U {B,C},
which will also be called a toroid.

If we instead start with the open arc on the circumcircle connecting B and C that does

not pass through A, and again rotate about the line through B and C, then we obtain a
different, but related, toroid, which will be denoted ‘Z;_4. This is the surface on which
o = T — A. Apart from the starting arc, this toroid stays inside the unit sphere and hence
inside T4. Let Tr_g = Tr_4 U {B,C}, which will also be called a toroid. The toroids
T8, Tn 8,9, Ty ¢, Tp, Trnp,Tcand Ty ¢ are similarly defined. All of these toroids will be
refered to as “basic toroids.”
_ Consider three-dimensional real space with these toroids removed: TasTr-n, T, Trp,
T¢ and T _¢. The connected components of the resulting space will be called “toroidal
regions.” Each is identified by means of a three-digit code, where the first digit relates to the
toroids 74 and T _4, the second digit relates to the toroids ?B and fn, g, and the third digit
relates to the toroids ?c and fn,c. If the first digit is O, then the region is outside ?A; if it
is 1, then the region is between T4 and Ty_4; and if it is 2, then the region is inside Tra.
Similarly for the second and third digits. For example, 001 refers to the region outside 7 4
and fg, but inside ?c-

Notice that the identification code for a toroidal region cannot involve a 0 and a 2, since
that would suggest that there are points that are both outside and inside the unit sphere.
Also, 222 is not a valid identification code, since no point can be inside Tr_a, inside Tr_p,
and inside 7;_¢. (These three toroids intersect in a single point, namely, the orthocenter of
AABC.) Notice too, that when the first digit of an identification code is 0, this means that
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o < ZA; when it is 1, this means that /A < o < ®m — ZA; when it is 2, this means that
o > T — ZA. Similarly for the other two digits.

Figure 3 is reproduced from [2]. It shows a graph that indicates how it is possible for
a particle to continuously transition from one toroidal region to another, either by passing
through one of the basic toroids (solid edges in the graph) or by passing through one of the
control points (dotted edges in the graph). The thickness/color of a solid edge indicates which
toroid the particle passes through: thin/red for 7y or Z;_,, medium/green for 7z or I, _p,
and thick/blue for Z¢ or Z;_¢. Similarly the thickness/color of a dotted edge indicates which
control point (A, B or C) the particle passes through.

For example, the solid edge connecting 121 and 122 represents moving across Z;_¢, while
staying inside Z; g, and between Z;_4 and 7. The dotted edge connecting 100 and 121
represents passing through vertex C and thereby changing toroidal regions as follows. If the
particle begins between ‘Z; 4 and ‘I3, but outside 73 and T¢, it will stay between Z;_4 and
Ty, but it will move inside Z;_p, and be between Z; ¢ and Z¢. This can be visualized by
considering one of the three double toroid (7 4 U Ty, Tp_pUTp, Ty UIc) at a time. When
zooming in on C, each of Z;_4 U7, and Z;_p U 7T can be approximated by a double cone
with apex C, while ¢ can be approximated by a plane (the tangent plane for Z¢ at C), and
Tr—c simply vanishes, since C is outside Z;_¢.

It will be helpful to subdivide the toroidal regions into smaller regions by cutting them
with the surface DCUCSDC (where D = 0). Let 000" and 000~ denote the portions of toroidal
region 000 where D > 0 and where D < 0, respectively. And so forth. The goal now is to show
that regions 0117, 101", 110" and 111" do not exist. This will establish that Rules 6 and 7
in Conjecture 1 are necessary conditions, that is, it will prove Theorem 4. A series of lemmas
will ultimately lead to this objective.

As we consider moving a particle P around in space, we now also consider all of the other
possible particles that would stay weakly related to P. The next result gives a sense of how
these will behave.

Lemma 12. When a particle P passes through Iy or ‘Iy_ 4, without simultaneously passing
through one of the other basic toroids, exactly one of the other particles weakly related to P
in the upper half-space, and its reflection in the lower half-space (also weakly related to P),
will pass through the vertex A. As they do, their values of ¢, and c3 will instantaneously be
negated because their values of the B and 'y angles will instantaneously be replaced by their
supplements. The particles will remain weakly related to P (and each other) after one of them
passes through A. Of course, what has been said here concerning Iy and I applies in a
symmetrical manner to ‘I, Tp_p, Ic and Iy_c.

Proof. Lemma 9 in [2] immediately implies all that is said here concerning P passing through
Ta. A small adjustment in the reasoning in the proof of Lemma 9 in [2] likewise handles
the case when P passes through 7;_, instead. In both cases, the reasoning begins as follows.
Consider the three lines that pass through P and one of the control points, when P is on Z; or
on Z;_,. This configuration of lines can be rigidly moved so as to now intersect at A, while
still passing through the control points. The angles between the two lines passing through B
and C continue to equal ZA and T — ZA. The third line now automatically passes through A.
(See Lemma 9 in [2] for further details.)

O
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Note that at the exact moment that when the particle passes through one of the control
points, two of the angles o, B, ¥ will be undefined, and so the notions of “strongly related”
and “weakly related” break down momentarily. However the algebraic geometric technique
of “blowing up” the control points can correct this deficiency for the weak relationship, but
not the strong relationship. As the particle passes through the control point, its weak relation-
ships with other particles continues unimpeded; not so for its strong relationships with other
particles. “Weakly related” is an important equivalence relation for achieving a better under-
standing of the nature of the P3P problem, since it is maintained under continuous motion,
even when passing through a control point.

A scenario that will be of particular interest in this paper, but which was not considered
in the other papers, is this: Assume that a particle P starts off on DC, high above the xy-plane
(z> 0). Suppose that P moves along a vertical line on DC until it reaches the circumcircle of
AABC. Let us say that ¢ is a fixed angle such that this line is describe by (x,y) = (cos ¢,sin0).

A description of this scenario begins by asking whether or not this line intersects one of
the basic toroids (74, Zp or ‘I¢). It will be helpful to let ¢} be either (¢2 + ¢3)/2 or T+ (02 +
$3)/2, such that the point (cos¢},sind)) lies midway between B and C along the arc of the
circumcircle connecting B and C that does not contain A (the shorter arc connecting B and C).
Similarly for ¢, and ¢.

Lemma 13. The vertical line on DC, described by (x,y) = (cos§,sin0) for fixed ¢, intersects
the toroid T 4 in the upper half-space (i.e. z > 0) if and only if 0| — /2 < ¢ < ¢} +7/2 (mod
2m), that is, if and only if there exists an integer k such that ¢ — /2 < ¢ — 2kn < ¢, +®/2.

Proof. The equation for the double toroid 7y U Z;_4 can be obtained from C% = cos? ZA.
Lemma 7 of [2] works this out to be the following:

2+ 280 (L +8) E— (L +83)0-2]Z
+(EE- D[ (L +8)E— (G +8)8

+(1+866G+868)] = o.

Again Z = 72 Consider the intersection of this double toroid with the danger cylinder. DC
is given by the equation £C = 1. Substituting 1/ for { in the formula for the double toroid
yields

G+ 5G)C+(G+6)
g ,

provided that £ is nonzero. The curve described by this equation, let us call it I, intersects the
xy-plane at the two points given by

Z:

_ L+G . (§2+C3)2

L+G G+

¢ =
The two points are therefore

G+Gs

C=Hr
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Now, setting £} = (§; + &3) /|8 + &3], we see that .

(& +8)E+ (G +8)

G
We can then reason that the open semicircle portion of the unit circle in the xy-plane that con-
nects the antipodal points i (8 + {3) /|82 + G5, and that has £ as its midpoint, is the vertical

projection of I" onto the xy-plane. Moreover, letting { = exp(i¢) range over this semicircle,
we see that ¢ ranges (modulo 27) over the values given in the lemma.

= 2|6 +G| > 0,

O

Note that the unit circle in the xy-plane is also part of the intersection of DC and the double
toroid T4 U7 4. Also, no part of 7_,4 not on this unit circle intersects DC.

As P moves along the vertical line on DC, we consider the two other particles, P’ and
P”, that also start off high above the xy-plane, and that stay weakly related to P, and so stay
on CSDC (by Lemma 11). They will initially move downward along CSDC, but the situation
becomes more complicated as soon as P crosses one of the three basic toroids. We need to
track the movement of P, P’ and P” as carefully as possible.

Towards this goal, additional ideas and notation from [2] are needed here. Begin by
observing that when P, P’ and P” are all high about the xy-plane, they are all in toroidal region
000. Let us consider how this might change as P descends along the verticle line. Notice that
if P goes into toroidal region 110, either by first going into 100 or 010, then P’ must either
also move into toroidal region 110 or move into toroidal region 112. If could, for instance,
wind up in 112 by first crossing 74 to arrive in 100, and then going through B to arrive in
112. (See the discussion of Figure 3.)

However, even if we know that P’ is in region 110, it is initially unclear whether P and P’
have the same values for o and [, or have supplementary values for these angles. Similarly,
two possibilities seemingly exist if we know that P’ is in region 112 instead. To capture a
sense of the possibilities, we will say that when P is in toroidal region 110, the pair of parti-
cles (P,P") will be in one of these four “configurations:” (110, 110), (110,110), (110,112),
(110,112). In writing, for instance, the configuration (110,112), we are indicating that P is
in toroidal region 110, P’ is in toroidal region 112, and that these two particles have the same
value for 3, but supplementary values for o, and supplementary values for .

The “0” at the end of “110” and the “2” at the end of “112” clearly indicate that the vy
values differ. The “1” at the start of “110” and the “1” at the start of “112” indicate that the
o values differ. An underlined 1 suggests that the corresponding angle is the supplement of
what it would be if the 1 was not underlined. The configuration (110,112) is the same as the
configuration (110, 112). In other words, which of the two leading ones we underline is irrel-
evant. The notation can be extended to discuss more than two particles. For instance, based
on the discussion so far, it seems that (P,P’, P") might have configuration (110,110,112), at
some moment. Theorem 4 will now be proved via a series of lemmas.

Lemma 14. As P descends down the line (x,y) = (cos®,sind), beginning with z > 0 and
continuing until z is arbitrarily close to, but not equal to, zero, it will pass through one or
two of the basic toroids, Ty, Ip, ‘Ic, but never all three of them.
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Proof. The control points / triangle vertices are A (= ;), B(= {;) and C (= {3). With ¢, ¢
and ¢}, as defined earlier, let A’ = {| = exp(i¢)), B =, = exp(i}) and C' = {; = exp(i 0}).
Restricting movement to the unit circle, denote the (arc) distance between two points £ and {’
by d(C, ).

Lemma 13 gives the range of ¢ that would cause P to pass through Z4. This corresponds
to an open semicircle ( { = exp(i) ) on the unit circle in the xy-plane. Call this semicircle
G,. Similarly, let semicircles 65 and ¢ correspond to Zg and T, respectively. These three
semicircles cannot all overlap, but must intersect pairwise. To see this, reason as follows.

First, 64 cannot contain A because the vertical line through A clearly does not intersect
T4 in the upper half-space. Of course, 64 does contain the point A’ = exp(i¢}), which is in
fact the midpoint of this semicircle (see Lemma 13). Likewise, 65 has B’ as its midpoint, but
does not contain B, and 6¢ has C’ as its midpoint, but does not contain C.

Now, d(B,C) =2d(A’',B) =2d(A’,C) < m. By this and symmetrical reasoning, we obtain
dA',B)<n/2,d(A',C)<=w/2,d(B,C)<m/2,d(B',A) <®/2,d(C',A) <m/2andd(C',B) <
n/2.So,d(B,C") <=, d(C',A") < wand d(A’,B") < m. By the Inscribed Angle Theorem, we
get ZC'A'B' < /2, ZA'B'C' <m/2, ZC'B'A’ < m/2, That is, the triangle AA’B'C’ is acute.

Letting O denote the origin, notice that O is the circumcenter of both AABC and AA’B'C’.
Here are additional facts that are straightforward to check: 2/A0C" = ZAOB, 2/AOB' =
/AOC, /BOC = 2n — ZAOB — ZAOC = 2(n — ZAOC' — ZAOB') = 2(n — £/B'OC'. So,
ZB'OC' =n—1/BOC >n—n/2=m/2. Likewise, ZC'OA' > 1/2 and ZA'OB' > /2.1t fol-
lows that o4 does not contain B’ nor C’, that 65 does not contain C’ nor A’, and that 6. does
not contain A’ nor B'.

It is now straightforward to see that any two of 64, 65 and G¢ overlap in an arc of length
strictly between 0 and 7t/2. From this, it is straightforward to argue that no point can be on all
three of these semicircles. Also, every point on the unit circle (in the xy-plane) is within a (arc)
distance m/2 of at least one of A’, B’ and C’, and so is on at least one of the three semicircles.

O

Lemma 15. As P descends from z > 0, as in Lemma 14, assume that the first of the basic
toroids it crosses is Ty. As it crosses, the configuration for (P,P',P") will change from
(000,000,000) to (100,100, 122) or (100,122,100). Similarly if P crosses first through Ty
or ‘I¢, instead of ‘Iy.

Proof. When P crosses ‘I, it enters toroidal region 100. Because of Lemma 12, either P’ or
P", but not both, must pass through the vertex A. Upon doing so, it will enter toroidal region
122 because its values of B and ¥ will be instantaneously replaced by their supplementary
angles, and because it will also have moved inside 7 4. The remaining particle will simply
cross Iy as P crosses 7y, and so also enter toroidal region 100.

O

Lemma 16. If P moves as in Lemma 15, and if P does not cross another basic toroid
before reaching the xy-plane, whichever of P' and P’ passed through the vertex A will
continue to move until it reaches the orthocenter H of AABC. The remaining particle
will move until it arrives at some point on the circumcircle (unit circle). In doing so,
after P passes through T4, none of the three particles (P, P', P") will cross the surface
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Proof. The points on the circumcircle, other than the vertices A, B and C, are weakly related
to each other. By the Inscribed Angle Theorem, while moving a particle around on the cir-
cumcircle, its o, § and 'y values remain constant until one of the three vertices is crossed. Upon
crossing, two of these angles get replaced by their supplements, while the third is unaffected.
At each of the non-vertex points on the circumcircle, (o, B,Y) equals one of the following:
(m—ZA, 4B, /C), (L/A,n— /B, /C), (/A,/B,n— £C).

Now, the orthocenter H of AABC is weakly related to all of these non-vertex points on
the circumcircle. Here o =t — A, f = n— B, Y= 1 — C. Reasoning using continuity, it can be
seen that as a particle moves in three dimensions, and as it approaches a non-vertex point on
the circumcircle, staying above the xy-plane, one and only one of its weakly related particles
above the xy-plane must approach H.

Returning to the setup in the lemma, one of P’ and P” must therefore approach H as P
approaches a non-vertex point on the circumcircle. The other has no place to go to other than
a different non-vertex point on the circumcircle. Moreover, after P passes through T 4, since
it never crosses o U Tn 4 UTpU Ty pUTcU Ty ¢ again, its weakly related particles
P’ and P” cannot (again) pass through this surface. Whichever of P’ and P” went through A is
the only one that can reach the point H, which is inside AABC, since this triangle is acute.

O

Lemma 17. Suppose that P, P' and P" move as in Lemma 15, but that after P crosses T y, it
next crosses ‘I g before arriving on the circumcircle of AABC. Assuming that P" goes through
the vertex A, later, P' will go through the vertex B. The configuration for (P,P', P") will change
like so:

(000,000,000) — (100,100, 122) — (110,112, 112).

Similarly, if we permute the vertices and/or switch the roles of P' and P".

Proof. The intermediate configuration is clear from Lemma 15 and its proof. Now, either P’
or P (but not both) must then go through B. However, P” cannot go through B, because, at
the moment when it would need to do so, it will be inside 7;_g, and so cannot reach B. So P’
must go through B. It is straightforward to then check that the final configuration must be as
claimed.

O

Lemma 18. Consider two particles P and P’ in the upper half-space which maintain a
weak relationship with each other, and which keep D > 0. Then, P and P' cannot both be in
toroidal region 110. Similarly for 101 and 011.

Proof. By Lemma 11, no other particle in the upper half-space can be weakly related to P
and P'. Now, the region 1107 is outside the unit sphere since it is outside 7 ¢. By Lemma
10, it is outside CSDC too since D > 0 throughout the region. It is thus outside DC too. It is
also a bounded region since toroidal region 110 is bounded. Assume that P are P’ are both in
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toroidal region 110*. Then, (P,P’) must be in one of these two configuration: (110,110) or
(110,110).

First suppose the configuration is (110,110). Suppose the particles move so as to stay
inside 110™". P cannot approach Z; because P’ cannot approach the vertex A. If P’ could, then,
upon passing through A, the configuration would need to change to (010,012), but there is
no toroidal region 012. Similarly, P cannot approach 7. The boundary of region 110" must
therefore be a subset of 7 U CSDC,. However, the region 1107 is outside 7 ¢ and outside
CSDC. Since 110" is bounded, this gives a contradiction. So the configuration (110,110) is
not possible.

Now consider the (110,110) possibility. From here, P cannot reach 7 since P’ cannot
reach A simultaneously. This is because when P arrives at ‘I, its o will equal ZA, so P’ will
need to have its o equal T— ZA. However, P’ has oo = ZA when it passes through A. Likewise,
P cannot reach 7g. By the same reasoning as before, this leads to a contradiction. We must
conclude that (110,110) is impossible too. Consequently, P and P’ cannot both be in toroidal
region 110. Likewise, still assuming D > 0, they cannot both be in toroidal region 101, nor
toroidal region O11.

O

Lemma 19. Consider again two particles P and P’ in the upper half-space which maintain
a weak relationship with each other, and which keeps D > 0. P cannot be in toroidal region
110 while P' is in toroidal region 112. Therefore, D < 0 throughout toroidal region 110, and
D = 0 can only happen for a point on DC. Ditto for toroidal regions 101 and 011.

Proof. Assume that P is in toroidal region 110 and that P’ is in toroidal region 112. Then,
(P, P") must be in one of these two configuration: (110,112) or (110,112). By symmetry, we
may assume (110,112). Now, P’ cannot reach vertex C, so P cannot reach Z¢. Also, P’ cannot
reach vertex B while P arrives at ‘73, since P and P’ have supplementary values for f, instead
of equal values.

If P goes through ‘T, and P’ goes through A, then the configuration will become
(010,010). P could not now pass through 7z because that would require P’ to pass through B,
resulting in the configuration (000,202), which is impossible. Region 010% is bounded, being
inside ?B. However, it is outside ?A and outside ?C. Reasoning as before, it is outside the
unit sphere, and so outside CSDCy. So T must be part of the boundary of 010", approach-
able by P. This produces a contradiction, and hence, P cannot be in toroidal region 110 while
P’ is in toroidal region 112.

Since P and P’ cannot both be in toroidal region 110 (by Lemma 18), we must conclude
that P cannot be in toroidal region 110. That is, D must be less than or equal to zero throughout
toroidal region 110. However, Lemmas 15 and 17 make equality impossible unless the particle
P is on DC. Those lemmas capture a complete sense of where a particle for which D = 0 can
be. Such a particle is on the surface DC UCSDC, and we have seen that if the particle is on
CSDC, but not on DC, then it must be in one of these toroidal regions: 000, 100, 010, 001,
122,212,221, 112, 121, 211. It cannot be in toroidal region 110, 101 nor O11.

O

Lemma 20. D < 0 throughout the toroidal region 111.
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Proof. A particle for which D = 0 must be on DC or else weakly related to a particle on DC.
Lemmas 14 and 16 make it clear that D cannot be zero inside toroidal region 111, because
these lemmas describe which toroidal regions a particle can be in when D = 0. The only
possibilities are 000, 100, 010, 001, 110, 101, 011, 112, 121, 211, 122, 212 and 221.

The boundary of the subregion 1117 of toroidal region 111 must thus be contained in the
set Ty UTr g UTpUTrpUTcUTr_c. However, because this region is bounded, part
of its boundary must come from T4, U T U T¢. If a particle is in region 1117, then it must
be able to reach this part of the boundary (staying in this region), cross the boundary, and so
arrive inside 110", 101" or 0017. But, these regions do not exist, by Lemma 19. Therefore,
region 1117 does not exist either.

O

We are now prepared to rapidly prove that the deltoid-based rules are necessary condi-
tions, when AABC is an acute triangle.

Proof of Theorem 4. Using the notation developed in this section, (D >0 A a < ZA) —
B<4BVY<ZC)means - (D>0Aa<ZA A B> 4B A y> ZC), which just means that
the region 011" does not exist. Item 6 in Conjecture 1 thus means that none of the regions
1107, 101*, 011" exists. Lemma 19 confirms this fact. Similarly, Item 7 in Conjecture 1
means that the region 1117 does not exist, which Lemma 20 confirms.

O

5 Experimental Results

Conjecture 1 has been extensively tested over a two year period, and has always held up.
In fact, tests even suggest that Items 1, 2, 4 and 6 might suffice, meaning that Items 3, 5
and 7 follow from them. For testing purposes, two C++ programs, tetrahedron_test.cpp
and dynamic_tetrahedron_test.cpp are available at the time of this publication’, and the
reader is encourages to experiment with these if possible.

In these programs, values for ZA, ZB and ZC are selected by the user, and fixed. The
cube [0,7]® is used for possible values of (a,B,y). It is divided into small cubic cells, the
number of which can be set via a preprocessor constant. Each cell is then determined to be
“allowable” or “unallowable,” by testing one or more points in the cell to see whether or not
its coordinates, i.e. its values of o, B and v, satisfy the conditions listed in Conjecture 1. The
number of points tested inside a given cell is determined by another preprocessor constant. If
any of these points satisfies all of the conditions, then this cell is declared to be “allowable;”
otherwise, it is declared to be “unallowable.” This is an imperfect way to proceed, but as long
as each cell is sufficiently small and enough points are tested, it does a reasonably good job
of distinguishing cells that contain some point satisfying the conditions from cells that do not
contain such a point.

At a different stage in the programs, many possible triples (., 3,7) are generated that cor-
respond to actual tetrahedra ABCP. The number of such is also controlled by a preprocessor
constant. If such a triple occurs in a cell, then that cell is called “occupied;” otherwise it is

3 Available upon request from the author, or at

https://github.com/mgrieck/tetrahedron_test.cpp
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/A : /B : ZC | unocc., all. % | occ. unall. %
1:1:1 0.0000 % 0.0017 %
3:3:5 0.0000 % 0.0067 %
3:4:5 0.0008 % 0.0083 %
3:5:7 0.0000 % 0.4217 %
5:7:8 0.0000 % 0.5683 %

Table 1: Results from a C++ test

called “unoccupied.” In an ideal situation, using a sufficient number of data points, and testing
each cell sufficiently, a cell should always be either occupied and allowable, or else, unoccu-
pied and unallowable. While in actuality, the programs generally produce a few unoccupied
and allowable cells, and a few occupied and unallowable cells, these only occur near the sur-
face in [0,7]? that is the boundary between the region of triples (o, ,7) that satisfy the list
of conditions, and the region of triples that do not. Unoccupied allowable cells seem to arise
simply due to an inadequate number of generated data points, 1.e. triples (o, 3,7) that actually
correspond to tetrahedra ABCP. Occupied unallowable cells seem to arise due to testing too
few points in the cell for allowability.

The manner in which the data points are generated should be explained. Rather than mov-
ing the point P around in space in a uniform way, and computing its values of (a, 3,7), it is far
better to work with three “tilt planes,” vary their “tilt angles” uniformly, and considering the
point of intersection of these planes, which then serves as P. Each of these planes is simply a
plane through one of the sidelines of the triangle AABC, and the tilt angle for such a plane is
just the dihedral angle that it makes with the plane containing the triangle (i.e. the xy-plane).
This method produces many points close to the triangle vertices, which is helpful since two
of the quantities o, B and v vary rapidly near a vertex.

The program tetrahedron_test.cpp is useful in running experiments on a
given triangle AABC, collecting and analyzing data. For visualization purposes,
dynamic_tetrahedron_test.cpp is quite handy. It presents an image of a layer of cells,
cells having the same first coordinate, and makes it easy to scroll through different layers.
The nature of each cell is represented by a different character, as explained during the exe-
cution of the program. Both programs use a number of preprocessor constants, besides those
already mentioned. Using these, the various conditions in Conjecture 1 can be activated or
deactivated.

Consider an example of the sort of results that tetrahedron_test.cpp produces. Work-
ing with an equilateral triangle AABC, using all of the conditions in Conjecture 1, and setting
specific values for certain preprocessor constants®, the program produced 24,652 occupied
allowable cells, 0 unoccupied allowable cells, 2 occupied unallowable cells, and 95,346 unoc-
cupied unallowable cells. If we regard unoccupied allowable cells and occupied unallowable
cells as errors, then the percentage of errors in this case was 0.0017%.

Similar results, using the same preprocessor constant values, were obtained for other acute
triangles, as seen in Table 1, though the results are not quite as impressive. The first column
shows the ratios of the angles ZA, ZB and ZC for the triangle that was tested. The second

5M=1000, N=50, REF_.NUM=10
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Fig. 4: Mathematica regions test

column gives the percentage of cells that were unoccupied and allowable. The third column
gives the percentage of cells that were occupied and unallowable. With the settings used for
the preprocessor constants, unoccupied allowable cells almost never happen, but occupied
unallowable cells do occur to a significant extent. Using dynamic_tetrahedron_test.cpp,
one can see that such anomalies occur near the boundary between the allowable and the
unallowable regions of [0,7]3, as discussed earlier.

Figure 4 shows a typical image created by Mathematica code’ for particular values of
the parameters ZA, /B, ZC and a. It plots ¢, (= cosP) against ¢3 (= cos?). The interior
of the large ellipse is where Rule 1 is satisfied (equivalently, where H > 0), and the focus
here is on this region. The blue subregion (all except the lightest subregion, in a grayscale
rendering) consists of points whose coordinates (c;,c3) are possible. These are determined
by carefully generating possible P3P setups. This is done using the extension of “Sullivan’s
method” discussed in [9], and this procedure does not involve the claims made in Conjecture
1. Darker shades of blue reflect multiple ways to obtain the allowable (¢, c3) pair, and this is
of no importance here.

The yellowish subregion (the lightest subregion, in a grayscale rendering) shows the
points (cz,c3) for which Item 1 in Conjecture 1 is satisfied, but at least one of the other item
is not satisfied. Together, the blue subregion and the yellowish subregion partition the region
inside of an ellipse. It was carefully checked that these two subregions do not overlap. This
suggests that Conjecture 1 holds for the prescribed values of ZA, /B, ZC and a.

7 Available upon request from the author, or at
https://www.mgrieck.com/P3P/Rieck_Solid_Geometry_Problems.nb
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The figure also shows a (red) curve, which is where D = 0 inside the ellipse. Notice that
part of this curve serves as a boundary between the blue and yellow subregions, highlighting
the importance of the quantity D. Many images similar to Figure 4 have been produced, all
supporting Conjecture 1.

6 Conclusion

Conjecture 1 provides fairly simple criteria that appear to be required in order for a tetrahe-
dron ABCP to exist with prescribed values for ZA (= ZCAB), /B (= ZABC), ZC (= £BCA),
o (= £ZBPC), B (= ZCPA) and v (= ZAPB). Most of these claims concerning necessity have
been proved in this paper. Conjecture 1 can be regarded as criteria for the Perspective 3-Point
Problem to have a real solution point. Experimental evidence from a couple C++ programs
and several Mathematica notebooks lends substantial support to the conjecture. This is based
on the assumption that the triangle AABC is acute.

Work is underway on extending the results to the case where AABC is an obtuse, rather
than acute, triangle. Already it is clear from the evidence that this is reasonable, and that
probably all that is required is some sort of tweaking of the formulas in Conjecture 1. How-
ever, no claim concerning the obtuse triangle case is being advanced in this paper, beyond
the fact that the “sphere-based rules” (Items 1, 2 and 3 in Conjecture 1) are also required
for this case too. Using C++ and Mathematica programs, one can plainly observe that some
sort of alteration of the deltoid-based rules (Items 6 and 7 in Conjecture 1) is needed. The
importance of the quantity D here too is unmistakable.
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