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Abstract: Grunert’s system of equations is commonly used as a basis for mathematical investigations into the Perspec-
tive 3-Point Pose Problem, for camera resectioning and tracking. This consists of three quadratic equations
involving three unknown distances. The discriminant of this system helps to determine the number of real-
valued solutions, in terms of the system’s parameters. In its raw form, this is a very complicated and seemingly
unintelligible polynomial. However, through a series of algebraic manipulations, this article manages to bring
this polynomial into a far more sensible form. In addition, by making substitutions suggested by the system of
equations, the discriminant is realized as a rational function of the Cartesian coordinates of the ambient space
containing the control points. Moving perpendicular to the plane containing the control points, and moving
away from this plane, cross sections of the surface on which this rational function vanishes approach a deltoid
curve, together with the deltoid’s inscribed circle (a cross section of the danger cylinder). As long as such a
cross section of the surface is not too close to the control points plane, it is homeomorphic to a union of the
deltoid and its inscribed circle. The orthogonal projection of the deltoid onto the control points plane contains
in its interior, the control points triangle’s orthocenter.

Figure 1: pinhole camera model for P3P

1 INTRODUCTION

The Perspective Three-Point Pose (P3P) problem,
a well-known and basic problem in camera resection-
ing and tracking, was introduced by J. A. Grunert,
soon after cameras were invented (Grunert, 1841).
Mathematically, the difficult part of this problem is
described as follows. Fix three points, P1, P2 and P3,

in three-dimensional real space, and also fix three an-
gles, θ1, θ2 and θ3. Is there another point P such that
θ1 = ]P2PP3, θ2 = ]P3PP1 and θ3 = ]P1PP2? If so,
determine how many such points exist, and identify
these. In a practical setting, P1, P2 and P3 are known
points in physical space, and are often referred to as
“control points.” A solution point P might represent
the optical center of a pinhole camera, and is mathe-
matically a “center of perspective” corresponding to
the given problem parameters P1, P2, P3, θ1, θ2 and
θ3. When there are multiple such P, we will say that
they are “related (solution) points.”

In the pinhole camera model that we are consider-
ing here, it is assumed that the intrinsic characteristics
of the camera are known, and in particular, the focal
length f . Figure 1 shows such a pinhole camera, the
three control points, and their camera images. Using
the coordinates of these image points, it is straight-
forward to determine the cosines of the angles θ1, θ2

and θ3. The details for this can be found in many
introductions to the problem. By solving P3P, it can



be deduced that the camera’s pinhole P is among the
various solution points. The Cartesian coordinates of
these points can readily be determined. Some addi-
tional criterion might then be applied to guess which
of these points corresponds to the actual position of
the camera.

Let ri be the distance from P to Pi, let di be the
distance between the two control points other than
Pi, and let ci = cosθi (i = 1,2,3). The di and ci are
known a priori, but the ri are unknown. The P3P
problem amounts to solving Grunert’s system of three
quadratic equations:

r2
2 + r2

3−2c1r2r3 = d2
1

r2
3 + r2

1−2c2r3r1 = d2
2

r2
1 + r2

2−2c3r1r2 = d2
3 .

(1)

By eliminating two of the unknowns, say r2 and
r3, it is well known that one arrives at a quartic equa-
tion in r2

1, which will here be denoted Q = 0. In
solving his system, Grunert actually obtained a quar-
tic in the ratio of two of the unknowns, and other
researchers have derived similar quartics (Haralick
et al., 1994). The equation Q = 0 suggests that there
can be up to four possibilities for the triple (r2

1,r
2
2,r

2
3),

but here we are only interested in triples of non-
negative values, because we are interested in regard-
ing these values as squared distances.

Each point P, not on the plane containing the con-
trol points, has a related solution point P′, easily ob-
tained by reflection through this plane. That is, since
P and P′ result in the same distances, r1, r2 and r3,
they also have the same values of c1, c2 and c3, when
(1) is solved for the c’s. The control points plane cuts
the rest of space into two halves, and for simplicity,
it is usually desirable to focus only on one of these
halves, and on the related points it contains. By doing
so, it is well known that, given the system (1), with
particular values for the c’s and d’s, there are a maxi-
mum of four related solution points.

Of special interest is the case when two or more
solution points coalesce into a single point, a “re-
peated solution point.” This just means that the so-
lution point has the property that if infinitesimally
small changes are made to the parameters of the sys-
tem, then the original solution point will be replaced
with multiple nearby solution points. This would of
course require that the quartic polynomial Q have a
repeated root. In the special case where a solution
point is in the control points plane, Q degenerates into

a quadratic polynomial, and any related solution point
is also in this plane. This “coplanar case” will not be
included in our discussion, so it is tacitly assumed that
P1, P2, P3 and P are not coplanar.

Having a repeated root for Q is necessary, but
not sufficient, for having a repeated solution point to
Grunert’s system. In fact, (Wolfe et al., 1991) exam-
ines the “altitude plane” case where a non-repeated
solution point corresponds to a repeated root of Q. It
has been understood for a while that a solution point is
a repeated solution point if and only if it is on the so-
called “danger cylinder” (cf. (Zhang and Hu, 2006)
and (Rieck, 2014)). This is the circular cylinder con-
taining the circumcircle of the control points triangle,
i.e. the triangle having the control points as vertices.

The question naturally arises as to conditions on
the parameters of Grunert’s system for the existence
of a repeated solution point. There is actually a poly-
nomial in the parameters of Grunert’s system, d1, d2,
d3, c1, c2 and c3, whose vanishing is necessary and
sufficient for a repeated solution point to occur. This
polynomial will be referred to as the “discriminant”
of Grunert’s system. The sign of this discriminant can
be used to help determine the number of real solution
points for Grunert’s system. (This is analogous to the
usage of discriminants of univariate polynomials in
determining the number of real roots.)

Practical algorithms that employ P3P to determine
the position of a camera relative to three control points
typically break down due to rounding errors when the
camera’s pinhole is on or very near the danger cylin-
der. This phenomenon was recognized as early as the
works (Smith, 1965) and (Thompson, 1966), where
it was already understood that the singularity or near-
singularity of the Jacobian matrix (∂ci/∂r j) associated
with the system (1) was responsible for the anomolies.

Algebraic methods, such as most of the methods
in (Haralick et al., 1994), that rely solely on elimi-
nating unknowns, and finding the roots of a resulting
univariate polynomial, therefore encounter difficulties
whenever the parameters of (1) are such that some
solution point is on or very near the danger cylin-
der, even if the pinhole is actually located at a differ-
ent, related solution point. However, iterative approx-
imation methods, such as a 3-dimensional Newton-
Raphson method, behave well near such related solu-
tion points, as long as they are not too near the danger
cylinder, and assuming too that a reasonably accurate
initial approximation is used. This is so since the Ja-



cobian is generally well behaved in such a region.
The discriminant of Grunert’s system is quite a

complicated polynomial, and is a factor of the dis-
criminant of Q, which is even more complicated. De-
spite its complexity, one of the achieved goals of this
paper is to write the discriminant of Grunert’s system
in a relatively simple way. This is achieved (Theorem
2 and Corollary 2) in a manner that reveals some in-
teresting geometry associated with Grunent’s system.

In order to better study Grunert’s system and P3P,
it will be advantageous to use a special coordinate
system for physical space. In this Cartesian coordi-
nate system, Pi will have coordinates (xi,yi,0) with
x2

i + y2
i = 1 (i = 1,2,3). Letting xi = cosφi and yi =

sinφi, it will also be assumed that φ1 + φ2 + φ3 = 0.
These requirements impose no actual restrictions on
the problem and they greatly simplify the computa-
tions to be performed in this paper. If these conditions
are not already satisfied in some a priori coordinate
system, then it is straightforward to apply a conformal
affine transformation so as to produce a new coordi-
nate system for which these conditions are satisfied.
In general, such a transformation just amounts to a
combination of a translation, a rotation and a scaling.

Letting (x,y,z) denote the coordinates of a solu-
tion point P, in the special coordinate system, we
thus have the additional system of equations associ-
ated with the well-known and easily solved trilatera-
tion problem:

(x− x1)
2 +(y− y1)

2 + z2 = r2
1

(x− x2)
2 +(y− y2)

2 + z2 = r2
2

(x− x3)
2 +(y− y3)

2 + z2 = r2
3.

(2)

Section 2 investigates some useful and intriguing
properties of the special coordinate system. Particular
attention is paid to developing successful techniques
for manipulate expressions involving x1, x2, x3, y1, y2

and y3, so as to keep resulting expressions as simple
as possible. However, some of the computations re-
quired for this study are still admittedly tedious, and
symbolic manipulation software can help a great deal
to reduce the labor. Nevertheless, in such cases, this
article does take pains to describe how the needed cal-
culations should be performed. In theory, this should
suffice to enable an energetic reader to do all of the
computations by hand. In practice, this might not re-
ally be a reasonable expectation. To assist, any in-
terested reader can, upon request, obtain from the au-
thor, a Mathematica® notebook that includes support

for the relevant computations.

Section 2 also draws some intriguing connections
between the algebra and the geometry of the trian-
gle whose vertices are the three control points. The
orthocenter of this triangle plays a particularly impor-
tant role. Letting (XH ,YH) denote its coordinates, it
is found that polynomials in x1, x2, x3, y1, y2 and y3

that are invariant under simultaneously permuting the
indices of the x’s and the y’s (in the same way) can
be expressed instead as polynomials in XH and YH . It
is also shown that the orthocenter must be contained
inside the standard deltoid curve that circumscribes
the circumcircle of the control points triangle (i.e. the
unit circle), and that seems to keep reappearing in this
study.

Section 3 continues work that began in (Rieck,
2011) and (Rieck, 2014), but all of this is developed
“from scratch” here. Attention is focused on a fam-
ily of simple rational functions of the parameters of
(1) (i.e the c’s and d’s) that can also be expressed as
simple rational functions of the Cartesian coordinates
(x, y, z) of any of its solution points. This capability
is of considerable potential importance, for the the-
ory and practice of P3P tracking. It is used in the
present article to derive the formula for the discrimi-
nant, and to gain a good understanding of the surface
in xyz-space upon which it vanishes. Two particularly
symmetric rational functions in this family are singled
out to serve as a basis for the others. Theorem 1 gives
very simple formulas for these two quantities in terms
of Cartesian coordinates.

Section 4 introduces the discriminant of Grunert’s
system, providing a careful definition for it in terms
of a multi-polynomial resultant. However, the dis-
cussion then quickly takes a quite different tack, and
derives a formula for the discriminant based on the
results of Sections 2 and 3. Theorem 2 presents this
formula, where, by means of (1) and (2), it is also
observed that when the c’s in the discriminant are re-
placed by r’s, and then these are replaced by x, y and
z, the result is a rational function in x, y and z2.

The surface in xyz-space where this vanishes is
then carefully examined. It is immediately seen that
this surface is related to the same deltoid curve that
contains the control points triangle’s orthocenter in
its interior. Theorem 3 then goes a long way towards
describing the surface on which the discriminant van-
ishes, showing how well behaved and “deltoidal” it is,
unless one gets too close to the control points plane.



Section 5 provides a concrete example of the preced-
ing results.

Section 6 takes advantage of a certain birational
transformation to put the formulas from Theorem 1
into a very nice, symmetrical form that better high-
lights the significance of the orthocenter. Theorem 4
establishes a basis for the functions from Section 3,
and describes their behavior in the limit as |z| → ∞.
Section 7 investigates special curves obtained by in-
tersecting contour surfaces for the functions in Sec-
tion 3. These are very well behaved far from the con-
trol points plane, but exhibit interesting and somewhat
erratic behavior near this plane. These curves are ul-
timately used to prove Theorem 3.

2 SPECIAL COORDINATES AND
AN ASSOCIATED ALGEBRA

The focus of this section is on learning to take
advantage of the special coordinate system in order
to facilitate manipulations of expressions involv-
ing the coordinates of the control points. Recall
that the control points have Cartesian coordinates
(xi,yi,0) = (cosφi,sinφi,0) (i = 1,2,3) with
φ1 + φ2 + φ3 = 0. Applications of the angle sum
formulas of trigonometry immediately yield the
following formulas.

Lemma 1. Under the imposed restrictions, the
Cartesian coordinates of the control points satisfy the
following equations:

(i) x1 = x2x3− y2y3,

(ii) x2 = x3x1− y3y1,

(iii) x3 = x1x2− y1y2,

(iv) −y1 = x2y3 + y2x3,

(v) −y2 = x3y1 + y3x1,

(vi) −y3 = x1y2 + y1x2,

(vii) x1x2x3− x1y2y3− y1x2y3− y1y2x3 = 1,
(viii) y1y2y3− y1x2x3− x1y2x3− x1x2y3 = 0.

These, along with the basic x2
i +y2

i = 1, can be applied
in different directions to reduce the number of factors
in a term, and to reduce the number of terms in an
expression. No precise prescription is offered for suc-
cessfully simplifying a given expression. In fact, it is
not even clear what it means for one expression to be

simpler than another. Consider the following exam-
ple:

2(1+ x1)(1+ x2)(1+ x3) = (1+ x1 + x2 + x3)
2

This is a true statement (see Lemma 2, item (ix)).
However, it is not completely clear which of these ex-
pressions should be regarded as “simpler.”

Let us now take up a general discussion of poly-
nomials in x1, x2, x3, y1, y2, and y3 that are invariant
under permutations of the indices. For instance,
x1y1 + x2y2 + x3y3. We begin by taking an inventory
of some of the simpler relationships between the
polynomials of the x’s and y’s that exhibit this
invariance. To do so, let us give names to two such
linear polynomials, by defining XH = x1 + x2 + x3

and YH = y1 + y2 + y3. The following relationships
will now be established.

Lemma 2. The coordinates of the control points are
related to XH and YH as follows:

(i) x2
1 + x2

2 + x2
3 = 1+[(XH −1)2−Y 2

H ]/2
(ii) y2

1 + y2
2 + y2

3 = 2− [(XH −1)2−Y 2
H ]/2

(iii) x2x3 + x3x1 + x1x2 = [(XH +1)2 +Y 2
H ]/4−1

(iv) y2y3 + y3y1 + y1y2 = [(XH −1)2 +Y 2
H ]/4−1

(v) x1y2 + x1y3 + x2y3 + x2y1 + x3y1 + x3y2 =

−YH

(vi) x1y1 + x2y2 + x3y3 = (XH +1)YH

(vii) x1x2x3 = [(XH −1)2−Y 2
H ]/4

(viii) y1y2y3 =−(XH +1)YH/2
(ix) (x1 +1)(x2 +1)(x3 +1) = (XH +1)2/2

Proof. Let e2 = x2x3+x3x1+x1x2, e′2 = y2y3+y3y1+

y1y2, p2 = x2
1 + x2

2 + x2
3 and p′2 = y2

1 + y2
2 + y2

3. Then,
using Lemma 1, (XH − 1)2 −Y 2

H = 1− 2XH + p2 +

2e2− p′2−2e′2 =−2+(3−2XH + p2− p′2)+2(e2−
e′2) = −2+ 2(p2−XH)+ 2(e2− e′2) = −2+ 2(p2−
XH)+ 2XH = 2(p2− 1). This establishes (i), and by
adding (i) and (ii), we immediately obtain (ii) as well.
(XH + 1)2 +Y 2

H = 1+ 2XH + p2 + 2e2 + p′2 + 2e′2 =

2(2+XH)+2(e2 + e′2) = 2(2+XH)+2(2e2−XH) =

4(1 + e2). This establishes (iii). Subtracting (iv)
from (iii), and applying Lemma 1 again, we obtain
an equation that is seen to be true, and that therefore
establishes the truth of (iv). Part (v) is an immedi-
ate consequence of Lemma 1, and by adding (v) and
(vi), we immediately obtain (vi) as well. Applying
Lemma 1 yet again, we see that x1x2x3− x1(x2x3−
x1)− x2(x3x1− x2)− x3(x1x2− x3) = p2−2x1x2x3 =

1, establishing (vii). Likewise, y1y2y3 − y1(y2y3 +



x1)−y2(y3y1+x2)−y3(y1y2+x3) =−(x1y1+x2y2+

x3y3)− 2y1y2y3 = 0, which establishes (viii). To es-
tablish (ix), simply expand the left side and then apply
the formulas that have already been established.

Together, Lemmas 1 and 2 supply a good deal of
flexibility in rewriting expressions involving the coor-
dinates of the control points. They are put to work for
this purpose throughout this article.

We now turn to three geometric concepts, namely,
the orthocenter of the control points triangle, the
area of this triangle, and a deltoid associated with
this triangle. In the following, (XH ,YH) is identified
with (XH ,YH ,0), and more generally, (x,y) will be
routinely identified with (x,y,0).

Lemma 3.

(i) The coordinates of the orthocenter of the control
points triangle are (XH ,YH).

(ii) The following formulas all express the square of
the area of the control points triangle:
1
16 d2

1d2
2d2

3 =

1
2 (1− x2x3− y2y3)(1− x3x1− y3y1)·
(1− x1x2− y1y2) =

1
16 (2d2

2d2
3 +2d2

3d2
1 +2d2

1d2
2 −d4

1 −d4
2 −d4

3) =

1
4 (x1y2 + x2y3 + x3y1− x1y3− x2y1− x3y2)

2 =

[(x1− x2)(x2− x3)(x3− x1)/YH ]
2 =

[(y1− y2)(y2− y3)(y3− y1)/(XH +1)]2 =
1
16 [ 27+8XH(X2

H −3Y 2
H)−

(X2
H +Y 2

H)(X
2
H +Y 2

H +18) ].

(iii) The orthocenter of the control points triangle
must be somewhere inside the standard deltoid
curve, defined by the equation

27+8x(x2−3y2) = (x2 + y2)(x2 + y2 +18).

Consequently, X2
H +Y 2

H < 9.

Proof. To show that (XH ,YH) are the coordinates
of the orthocenter, we simply observe that this
point, together with the three control points form an
orthocentric system, meaning that the line through
any two of these points is perpendicular to the line

through the other two points. Pairing the point whose
coordinates are (XH ,YH) with say the control point
P1, we can check for the claimed orthogonality by
computing a dot product as follows:

(XH − x1,YH − y1) · (x2− x3,y2− y3) =

(x2 + x3,y2 + y3) · (x2− x3,y2− y3) =

x2
2− x2

3 + y2
2− y2

3 = 1−1 = 0.

Similarly, if we pair the points differently. This estab-
lishes the first (i).

To prove (ii), we begin by pointing out that the
two formulas involving the sidelengths di are obtained
from standard triangle area formulas. The first of
these asserts that the area equals the product of the
sidelengths divided by four times the circumradius,
but of course the circumradius is one in the setup here.
The second formula involving the di is easily derived
from the well-known Heron’s Formula.

The formulas immediately under these two formu-
las are obtained from them by simply using the fact
that d2

1 = (x2−x3)
2+(y2−y3)

2 = 2(1−x2x3−y2y3),
and similarly for d2

2 and d2
3 . These formulas are in-

variant under permutations of the indices, and using
Lemma 2, they can be rewritten in terms of XH and
YH , resulting in the final formula in (ii). The two re-
maining formulas in (ii) require further manipulations
using the earlier lemmas. The details are omitted, but
the process is straightforward. This establishes (ii).

Finally, the equation in (iii) is indeed the formula
for a deltoid curve, and it is in fact, the same standard
deltoid curve that appears in (Rieck, 2015). The quan-
tity in the last formula in (ii) must of course be posi-
tive since it represents the square of an area. But this
requirement means that the orthocenter, whose coor-
dinates are (XH ,YH) must be inside the deltoid. This
imposes bound X2

H +Y 2
H < 9, since the standard del-

toid is contained in the circle of radius three centered
at the origin.

No doubt, item (iii) in Lemma 3 admits a purely
geometric proof, and may very well have been con-
sidered elsewhere in the context of triangle geometry.
Clark Kimberling introduces the deltoid in a very dif-
ferent way in Chapter 6, Section 1 of (Kimberling,
2003). The image there seems to suggest that any two
of the lines in the pencil of lines shown there intersect
in the interior of the deltoid. Moreover, the altitudes
of the triangle are included among these lines, which



would again seem to lead to the conclusion that the
orthocenter is located inside the deltoid.

After a quick study of the algebra A of polynomi-
als in x1, x2, x3, y1, y2, y3, this algebra can then be
applied productively to a study of Grunert’s system.
The polynomial coefficients will always be real num-
bers. Though it is worthwhile to consider the com-
plexified version of A , this is unnecessary for our pur-
poses here, and so will be avoided. Now, x1, x2, x3, y1,
y2, and y3 are just required to satisfy the equation in
Lemma 1, so technically, A can be regarded as a quo-
tient ring of a polynomial ring in six indeterminates,
by modding out by the ideal generated by the set of
polynomials suggested by Lemma 1.

Let S3 be the symmetric group of permutations of
the elements of the set {1,2,3}. Let G be the auto-
morphism group of A , isomorphic to S3, where each
σ∈ S3 induces an element σ̂ of G that sends each xi to
xσ(i) and sends each yi to yσ(i). Let AG be the subalge-
bra of A consisting of the fixed elements of A under
the action of G . Using the multiplication operation of
A , one can consider A to also be an AG -module.

The Reynolds (average) operator π on A with re-
spect to G is defined by the following formula:

π( f )(x1,x2,x3,y1,y2,y3) = (3)

1
6 ∑

σ∈S3

f (xσ(1),xσ(2),xσ(3),yσ(1),yσ(2),yσ(3))

for all f ∈ A . Let N consist of the elements of A
that are annihilated by π (i.e. mapped to zero). The
elements of AG are the elements of A left invari-
ant (fixed) by π. N and AG are AG -submodules of
A . Moreover, it is well known and straightforward to
check that as AG -modules,

A = AG ⊕ N .

As an algebra, AG is freely generated by two el-
ements, namely XH and YH . The fact that XH and YH

are algebraically independent can be seen intuitively
by considering the geometry that motivated this al-
gebra. There, (XH ,YH) is the orthocenter associated
with the triangle whose vertices are (x1,y1), (x2,y2)

and (x3,y3). By varying the vertices subject to the re-
strictions, it is possible to move (XH ,YH) to any point
inside the deltoid. Thus there is no non-trivial poly-
nomial equation of XH and YH (alone) that is satisfied
for all possible values of XH and YH . It is also pos-
sible to show this fact algebraically by generating a

suitable Groebner basis involving the Lemma 1 equa-
tions and the definitions for XH and YH . No member
of the resulting Groebner basis is a polynomial of XH

and YH alone.
As an AG -module, AG itself is generated by the

identity element. The situation for the AG -module N
is more interesting.

Lemma 4. As an AG -module, N is generated by the
following the seven elements:

X1 = 2x1− x2− x3

X2 = 2x2− x3− x1

X3 = 2x3− x1− x2

Y1 = 2y1− y2− y3

Y2 = 2y2− y3− y1

Y3 = 2y3− y1− y2

∆ = x1y2 + x2y3 + x3y1− x1y3− x2y1− x3y2.

In fact, since X1 +X2 +X3 = 0 and Y1 +Y2 +Y3 = 0,
one of the X’s and one of the Y ’s can be removed,
reducing to a set of five generators. Moreover, the fol-
lowing product formulas hold for these elements, and
exhibit decompositions into AG and N components:

X2
i = 1/2 (9−6XH +X2

H −3Y 2
H) +

1/2 (3Xi−XHXi−3YHYi)

Xi+1 Xi+2 = −1/4 (9−6XH +X2
H −3Y 2

H) +
1/2 (3Xi−XHXi−3YHYi)

Y 2
i = 1/2 (9+6XH −3X2

H +Y 2
H)−

1/2 (3Xi +3XHXi +YHYi)

Yi+1 Yi+2 = − 1/4 (9+6XH −3X2
H +Y 2

H)−
1/2 (3Xi +3XHXi +YHYi)

Xi Yi = (2XH +3)YH +
1/2 (YHXi +XHYi−3Yi)

Xi Yi+1 = − 1/2 (2XH +3)YH +
1/2 (YHXi+2 +XHYi+2−3Yi+2 +3∆)

Xi+1 Yi = − 1/2 (2XH +3)YH +
1/2 (YHXi+2 +XHYi+2−3Yi+2−3∆)

Xi ∆ = 1/3 (3+2XH)YH(Xi+2−Xi+1) +
1/6 (9−6XH +X2

H −3Y 2
H)·

(Yi+1−Yi+2) ∈ N
Yi ∆ = 1/3 (3+2XH)YH(Yi+1−Yi+2) +

1/6 (9+6XH −3X2
H +Y 2

H)·
(Xi+2−Xi+1) ∈ N

∆2 = 1/4 [27+8XH(X2
H −3Y 2

H)−
(X2

H +Y 2
H)(X

2
H +Y 2

H +18) ] ∈ AG .

(Indices here are to be read modulo 3.)



Proof. The product formulas are straightforward,
though a bit tedious, to check, by replacing each gen-
erator with its definition, and by applying the relations
found in Lemmas 1 and 2. The formula for ∆2 is from
Lemma 3.

Next, the elements of the group G permute the ele-
ments of each of the sets {X1,X2,X3}, {Y1,Y2,Y3} and
{∆,−∆}, and it then becomes clear that each of the
seven listed elements is annihilated by π, and hence
belongs to N . Let M be the AG -submodule of N
generated by the listed elements. We must show that
M = N .

Since π(π( f )) = π( f ) for each f ∈ A , it is seen
that AG = {π( f ) | f ∈ A} and N = { f −π( f ) | f ∈
A}. Now, xi−π(xi) = xi−XH/3 = Xi/3 ∈M for i =
1,2,3. Similarly, yi−π(yi) ∈M . Therefore, xi,yi ∈
AG ⊕ M . We next want to establish that the AG -
module AG ⊕ M is actually an algebra, that is, it is
closed under multiplication. But this is clear since the
listed product formulas show that M ·M ⊆AG ⊕M .

Since 1,x1,x2,x3,y1,y2,y3 ∈ AG ⊕ M , since
AG ⊕ M is closed under multiplication, and since
1,x1,x2,x3,y1,y2,y3 generate A as an algebra, it fol-
lows that AG ⊕ M = A . Because M ⊆ N and
AG ⊕ N = A , we can conclude that M = N .

3 A CLASS OF RATIONAL
FUNCTIONS

Returning to Grunert’s system (1), some math-
ematical insight into this system is gained by con-
sidering what happens if one or more of the c’s are
negated. All real solutions to (1) will be considered
here, meaning that the r’s are allowed to be negative
too. This idea can be visualized by imagining that
each line connecting a center of perspective to a con-
trol point is a copy of the real number line with zero
at the center of perspective, arbitrarily oriented in one
direction or the other. Reversing this orientation then
amounts to negating the corresponding ri.

Now, negating some ci in (1) corresponds to re-
placing θi with its supplementary angle. Changing
just one such ci alters the arrangement significantly,
leading to quite different mathematical solutions, i.e.
very different possibilities for the r’s. However, if ex-
actly two of the c’s are negated, then it is easy to see
how a solution to the original setup can be converted

into a solution to the altered setup. For instance, if
c1 and c2 are negated, then by simply negating r3

too, the system remains essentially unaffected. This
merely amounts to reorienting the imagined number
line connecting the center of perspective to the third
control point.

Of course this change in an imagined line has ab-
solutely no effect on the solution points in physical
space (i.e. xyz-space). Also unaffected are these four
quantities: c2

1, c2
2, c2

2 and c1c2c3. Because of these
facts, it might be argued that these quantities repre-
sent more accurately the physical P3P problem than
do c1, c2 and c3 themselves. In any case, in Section
4, it is shown that the discriminant of Grunert’s sys-
tem can be written as a polynomial in c2

1, c2
2, c2

2 and
c1c2c3.

Letting

η = (1− c2
1− c2

2− c2
3 +2c1c2c3)

1/2 ,

the following formulas are immediately obtained
from (1), (2), and Lemmas 1 and 3, and have mostly
been proven already in (Rieck, 2014).

Lemma 5. Various quantities introduced up to this
point are related as follows:

(i) d2
1 = (x2− x3)

2 +(y2− y3)
2

= 2(1− x2x3− y2y3)

(and similarly for d2
2 and d2

3 )
(ii) r2

i = 1−2(xix+yiy)+x2+y2+z2 (i= 1,2,3)
(iii) (r2

2 + r2
3−d2

1)/2 =

(x− x2)(x− x3)+(y− y2)(y− y3)+ z2

(and similarly with indices permuted)
(iv) 4r2

1r2
2r2

3 η2 = d2
1d2

2d2
3 z2

(v) 4r2
1r2

2r2
3 c2

1 = r2
1 (r

2
2 + r2

3−d2
1)

2

(and similarly for c2
2 and c2

3)
(vi) 8r2

1r2
2r2

3 c1c2c3 =

(r2
2 + r2

3−d2
1)(r

2
3 + r2

1−d2
2)(r

2
1 + r2

2−d2
3)

(vii) c2
1 /η2 = r2

1 (r
2
2 + r2

3−d2
1)

2 /(d2
1d2

2d2
3 z2)

(and similarly for c2
2 /η2 and c2

3 /η2)
(viii) c1c2c3 /η2 = (r2

2 + r2
3−d2

1)·
(r2

3 + r2
1−d2

2)(r
2
1 + r2

2−d2
3) / (2d2

1d2
2d2

3 z2)

(ix) The quantities c2
1, c2

2, c2
3, c1c2c3 and η2 can

all be expressed as rational functions of d2
1 ,

d2
2 , d2

3 , x, y and z2.

In anticipation of the proof of the theorem in this
section, the following lemma expresses significant
quantities involved in the special-coordinates P3P



setup in terms of the generators for A as a module
over AG . These formulas are straightforward conse-
quences of Lemmas 1, 2, 4 and 5.

Lemma 6. Various quantities can be expressed in
terms of the generators for A as follows:

xi = 1/3 (XH +Xi),

yi = 1/3 (YH +Yi),

(1− xi)yi = 1/6 [ (3−XH)Yi

−YHXi−2XHYH ],

(1+ xi)xi = 1/6 [ (3+XH)Xi−YHYi

+X2
H −Y 2

H +3 ],

d2
i = 1/3 (9−X2

H −Y 2
H)

+2/3 (XHXi +YHYi),

r2
i = 1+ x2 + y2 + z2

−2/3 (XH +Xi)x− 2/3 (YH +Yi)y,

r2
2 + r2

3−d2
1 = 2(x2 + y2 + z2)−1

+2/3 [(X1−2XH)x+(Y1−2YH)y]

+1/3 [X2
H +Y 2

H −2XHX1−2YHY1]

(and similarly for r2
3 + r2

1−d2
2 and r2

1 + r2
2−d2

3).

Two other quantities that will be required are
r2

1r2
2r2

3 and (r2
2 + r2

3−d2
1)(r

3
2 + r2

1−d2
2)(r

2
1 + r2

2−d2
3).

These can be expanded as follows.

Lemma 7. The expressions r2
1r2

2r2
3 and

(r2
2 + r2

3 − d2
1)(r

3
2 + r2

1 − d2
2)(r

2
1 + r2

2 − d2
3), when

expanded in terms on x, y and z, in accord with
Lemma 5, have coefficients that belong to AG . As
such, their expressions in terms of XH and YH are as
specified in the appendix.

Proof. This is only a sketch of a proof. A com-
plete and careful proof requires significant algebraic
manipulations that cannot be detailed in the limited
space. Nevertheless, a roadmap is provided here for
how this can be accomplished with a determined ef-
fort.

r2
1r2

2r2
3 is clearly invariant under the group G , and

hence is an element of AG . For i = 1,2,3, write
r2

i = pi + qi where pi ∈ AG and qi ∈ N . We have
these two facts concerning the products of elements
of two sets: AG ·AG = AG and AG ·N = N . It
follows that r2

1r2
2r2

3 = p1 p2 p3 + p1q2q3 + q1 p2q3 +

q1q2 p3 + q1q2q3. According to Lemma 6, pi = 1+
x2 + y2 + z2− 2/3(XH x+YH y) and qi = −2/3(Xi x+
Yi y). Since p1 = p2 = p3, we only need to compute
p1 p2 p3 + p1(q2q3 + q1q3 + q1q2)+ q1q2q3. Clearly
q2q3+q1q3+q1q2 ∈AG , so to compute this, it is only
necessary to compute the invariant part of q2q3 (i.e.
the AG -compenent), and multiply this by three. Since
q1q2q3 ∈ AG , to compute this, it suffices to compute
the invariant part of the product of q1 and the annihi-
lated part of q2q3 (i.e. the N -compenents).

Direct computation, using Lemmas 4, shows
that the invariant part of q2q3 is π(q2q3) =
4/9 π((X2x + Y2y)(X3x + Y3y)) = 4/9 [π(X2X3)x2 +

π(Y2Y3)y2 +π(X2Y3 +X3Y2)xy] = 4/9 [−1/4(9−6XH +

X2
H − 3Y 2

H)x
2− 1/4(9+ 6XH − 3X2

H +Y 2
H)y

2− (2XH +

3)YHxy] = 1
9 (3Y 2

H−X2
H +6XH−9)x2+ 1

9 (3X2
H−Y 2

H−
6XH − 9)y2 − 4

9 (2XH + 3)YH xy. Likewise, the an-
nihilated part is 2

9 [(3−XH)X1− 3YHY1]x2− 2
9 [3(1+

XH)X1 +YHY1]y2 + 4
9 (YHX1 + (XH − 3)Y1)xy. Fol-

lowing the above procedure now leads directly to the
claimed result concerning r2

1r2
2r2

3. One can handle
(r2

2 + r2
3 − d2

1)(r
3
2 + r2

1 − d2
2)(r

2
1 + r2

2 − d2
3) in a simi-

lar manner, though the computations are admittedly
more complicated.

Next, consider moving a point P with coordinates
(x,y,z) around in space, and allowing the r’s and c’s
to change to match P in the systems of equations (1)
and (2). As |z| tends to infinity, so too do |r1|, |r2| and
|r3|, while |c1|, |c2| and |c3| tend to one. Nevertheless,
it is possible to find useful rational function in c2

1, c2
2,

c2
2 and c1c2c3 that converge and become non-trivial as
|z| tends to infinity. In fact, such functions were em-
ployed in some of the author’s previous work. Based
in part on the results in (Rieck, 2015), it becomes pos-
sible to identify all such rational functions whose nu-
merator and denominator are both linear, and to un-
derstand clearly what happens as |z| goes to infinity.
We can write such a rational function as the ratio of
two other rational functions, each of the form

α+βc1c2c3 + γ1 c2
1 + γ2 c2

2 + γ3 c2
3

η2 . (4)

Lemma 8. The quantity (4) can be rewritten as a
rational function in x, y, z2, having d2

1d2
2d2

3 z2 as its de-
nominator, and having a numerator that is a polyno-
mial in z2 of degree three or less, with polynomials in
x and y as coefficients. When α+β+γ1+γ2+γ3 6= 0,



this rational function diverges and is asymptotic to
4(α+β+ γ1 + γ2 + γ3) z4 /d2

1d2
2d2

3 , as |z| → ∞.

Proof. Using Lemma 5, the quantity (4) can be
rewritten as a rational function of x, y and z2, with
the denominator being d2

1d2
2d2

3 z2. The numerator is
clearly a cubic polynomial in z2 whose coefficients
are polynomials in x and y, and the leading coefficient
can be seen to be 4(α+ β+ γ1 + γ2 + γ3). The last
claim in the lemma thus follows.

The next lemma is proved by just continuing
the analysis begun in the proof of the Lemma 8,
but arranging for the z6 term in the numerator to
vanish, and then computing the coefficient of z4.
This too is straightforward using Lemma 5. Here it
is helpful to introduce a new quantity, namely, set
ι = 3 − x2x3 − x3x1 − x1x2 − y2y3 − y3y1 − y1y2 =

(9−X2
H −Y 2

H)/2 = (d2
1 +d2

2 +d2
3)/2.

Lemma 9. Setting α = −β− γ1− γ2− γ3 in (4), this
quantity can now be expressed as a rational function
in x, y, z, having d2

1d2
2d2

3 z2 as its denominator, and
having a numerator that is a polynomial in z2 of de-
gree two or less. When ιβ+ d2

1γ1 + d2
2γ2 + d2

3γ3 6= 0,
this rational function diverges and is asymptotic to
−4(ιβ+d2

1γ1 +d2
2γ2 +d2

3γ3) z2 /d2
1d2

2d2
3 , as |z| → ∞.

As a consequence of Lemmas 8 and 9, the
following becomes immediately clear.

Lemma 10. A quantity of the form (4) diverges as
|z| → ∞, except possible when the parameters satisfy
both

α+β+ γ1 + γ2 + γ3 = 0 and
ιβ+d2

1γ1 +d2
2γ2 +d2

3γ3 = 0.
(5)

Moreover, the ratio of two functions of the form (4)
must either diverge or else approach a constant value,
independent of x and y, as |z| → ∞, except possibly
when both functions satisfy (5).

A goal now will be to try to gain a solid under-
standing of functions of the form (4) that satisfy (5).
Two particular functions of this sort are central to this
investigation. These will be called L and R , for “left”
and “right.” Here are the definitions:

L =
2

η2

[
(1− x1)y1 (c2

1−1)+(1− x2)y2(c2
2−1)+

(1− x3)y3(c2
3−1)+YH (1− c1c2c3)

]
,

(6)

R =
2

η2

[
(1+ x1)x1 (c2

1−1)+(1+ x2)x2 (c2
2−1)+

(1+ x3)x3 (c2
3−1)+(1+XH)(1− c1c2c3)

]
.

The reason for choosing these two functions
will become clearer. This begins with the following
lemma.

Lemma 11. L , R and the constant function 1 are
all S3-invariant, where S3 here acts by permuting the
subscripts on the c’s, x’s and y’s. Additionally, they
are all of the form (4) and satisfy conditions (5). Lin-
ear combinations of these functions (with constant co-
efficients) are also of the form (4) and satisfy (5). In
fact, all functions of the form (4) that satisfy (5) are
uniquely expressible in this way.

Proof. Treating the constant function 1 as η2/η2, it is
easy to check that L , R and 1 are all of the form (4),
and they are clearly S3-invariant. Let us now establish
condition (5) for each of these three functions. In the
case of the constant function 1, this can quickly be
checked directly using only part (i) of Lemma 5.

In the case of L , β = −YH , γ1 = (1 − x1)y1,
γ2 = (1− x2)y2 and γ3 = (1− x3)y3. The first of
the two required conditions is clearly satisfied, that
is, α = −β− γ1 − γ2 − γ3. The other condition re-
quires some effort to establish. One way to pro-
ceed uses the following observation about symmet-
ric polynomials: y2

1(y2 + y3)+ y2
2(y3 + y1)+ y2

3(y1 +

y2) = Y 3
H/3−YH(y2

1 + y2
2 + y2

3)/3+YH(y2y3 + y3y1 +

y1y2)/3−3y1y2y3.
By applying Lemma 2, this reduces to YH (3 +

4XH + X2
H + Y 2

H)/4. When this amount is sub-
tracted from ιβ+d2

1γ1+d2
2γ2+d2

3γ3, the difference is
seen to equal −YH − 2(x1y1 + x2y2 + x3y3)+ (x1x2 +

x1x3 + x2x3)(y1 + y2 + y3)+ 2x1x2x3(y1 + y2 + y3)−
2(y1x2x3 + x1y2x3 + x1x2y3) + 2y1y2y3XH − 3y1y2y3.

Applying Lemma 2 again, reduces this to −YH (3+
4XH +X2

H +Y 2
H)/4. Therefore ιβ+d2

1γ1+d2
2γ2+d2

3γ3

is zero.
In the case of R , β = −1−XH , γ1 = (1+ x1)x1,

γ2 = (1 + x2)x2 and γ3 = (1 + x3)x3. Again, the
first condition is immediate, but the second condi-
tion requires a few manipulations. A possible ap-
proach here we makes use of the fact that x2

1y2y3 +

x2
2y3y1 + x2

3y1y2 = (1− y2
1)y2y3 +(1− y2

2)y3y1 +(1−



y2
3)y1y2 = y2y3 + y3y1 + y1y2 − y1y2y3YH = (−3 −

2XH + X2
H + 3Y 2

H + 2XHY 2
H)/4. When -2 times this

amount is subtracted from ιβ+ d2
1γ1 + d2

2γ2 + d2
3γ3,

the difference is seen to equal (1+XH)(y2y3 +y3y1 +

y1y2)− 2(x1y2y3 + x2y3y1 + x3y1y2)− 2x1x2x3XH +

(1 + XH)(x2x3 + x3x1 + x1x2) + 2(x2
1 + x2

2 + x2
3) −

6x1x2x3 − XH − 3 = (−3 − 2XH + X2
H + 3Y 2

H +

2XHY 2
H)/2. Therefore ιβ+d2

1γ1+d2
2γ2+d2

3γ3 is zero.
The constant function 1 satisfies (5) because 2ι =

d2
1 +d2

2 +d2
3 . Properties (4) and (5) having been estab-

lished for all three functions, the linear nature of these
properties makes it clear that they also hold for linear
combinations of the functions. Since these functions
are easily seen to be linearly independent, together
they span a three-dimensional space of functions. But
the space of all functions of the form (4) is five-
dimensional, and condition (5) imposes two linearly
independent restrictions, so the space of all functions
of the form (4) that satisfy (5) is three-dimensional.
Therefore, this space must be the space having L , R
and 1 as a basis.

Using (1) and (2), we will often regard that c1, c2

and c3 are expressed as functions of x,y and z. In this
way, any quantity expressible as a function of c1, c2

and c3 is also expressible as a function of x,y and z (by
composing functions). This is particularly true of L
and R . This thinking is behind Theorem 1, below. It
indicates precisely how the quantities L and R , which
were defined in terms of the parameters of Grunert’s
system, can also be expressed simply in terms of the
coordinates of any of its solution points. In Section 4,
the knowledge gained here concerning L and R is ap-
plied to obtain a better understanding of the discrimi-
nant polynomial associated with Grunert’s system.

The first proof of Theorem 1 offered here is
purely algebraic, with the algebra A used to simplify
the computations involved. Nevertheless, the com-
putations are still tedious and greatly benefit from
the use of symbolic manipulation software. There is
however another known way to prove the theorem.
Corollary 1 is shown to follow from the theorem
by simply applying a certain linear transformation.
However, this corollary is really just a restatement
of Theorem 1 in (Rieck, 2014). Since the latter was
previously proven via a geometric argument, one can
simply invert the linear transformation to obtain a
rapid proof of Theorem 1 here, based on Theorem 1
there. This alternative proof of Theorem 1 is outlined

following Corollary 1.

Theorem 1. The quantities L and R defined in (6) in
terms of c1, c2 and c3, are also equal to the following
expressions involving x, y and z instead:

L =
[

2(1+ x)y− (1+XH)y−YH(1+ x)
]
·

(x2 + y2−1)z−2 + 2(1+ x)y

and

R =
[
y2− (1− x)2 +(1−XH)(1− x)−YHy

]
·

(x2 + y2−1)z−2 + y2− (x−1)2.

In the special case of an equilateral triangle, where
XH = YH = 0, these simplify as follows:

L = 2(1+ x)y + (1+2x)y(x2 + y2−1)z−2

and R =

y2− (1− x)2 + (y2− x2 + x)(x2 + y2−1)z−2.

First proof of Theorem 1. Similar to Lemma 7, only
a sketch of a proof is provided here. This should sup-
ply adequate guidance to allow the motivated reader
to fill in the details. The polynomial manipulations
are difficult (but not impossible) to do by hand. They
are much easier to perform with the aid of a symbolic
manipulation software system.

By Lemma 5, we can express r2
1, r2

2, r2
3, r2

2 + r2
3−

d2
1 , r2

3 + r2
1−d2

2 and r2
1 + r2

2−d2
3 as polynomials in x,

y and z, with the coefficients being polynomials in x1,
x2, x3, y1, y2 and x3. Define

N0 = 8r2
1r2

2r2
3

N1 = 2r2
1(r

2
2 + r2

3−d2
1)

2

N2 = 2r2
2(r

2
3 + r2

1−d2
2)

2

N3 = 2r2
3(r

2
1 + r2

2−d2
3)

2

N4 = (r2
2 + r2

3−d2
1)(r

2
3 + r2

1−d2
2)(r

2
1 + r2

2−d2
3).

By Lemma 5 again, for i = 1,2,3, we have
c2

i /η2 = Ni /(2d2
1d2

2d2
3z2). Likewise, c1c2c3 /η2 =

N4 /(2d2
1d2

2d2
3z2). Letting L0 = d2

1d2
2d2

3 z2L , we see
from (1), (6), and Lemma 1 that

L0 = (x1y1 + x2y2 + x3y3)N0 +(1− x1)y1 N1

+(1− x2)y2 N2 +(1− x3)y3 N3−YH N4.



Likewise, letting R0 = d2
1d2

2d2
3 z2R , we see that

R0 = (1− x2
1− x2

2− x2
3)N0 +(1+ x1)x1 N1

+(1+ x2)x2 N2 +(1+ x3)x3 N3− (1+XH)N4.

Note that N0,N1,N2,N3,N4,L0 and R0 can also be
expressed as polynomials in x, y and z, with the coef-
ficients being polynomials in x1, x2, x3, y1, y2 and x3.
So these equations can be expressed as polynomial
equations, and it suffices to compare corresponding
coefficients in order to prove the theorem. However,
the manipulations involved in doing this directly, in-
cluding repeated applications of Lemma 1, are cum-
bersome. The algebra A introduced in the previous
section, and particularly Lemma 5, can be employed
to reduce the labor involved.

Lemma 7 expresses N0 and N4 (apart from a
constant factor for N0) in terms of XH and YH .
Because of symmetry, expressing N1 in terms of
XH ,YH ,X1,X2,X3,Y1,Y2,Y3 and ∆, automatically pro-
vides similar expressions for N2 and N3. Now, N1 =

2r2
1(r

2
2 + r2

3 − d2
1)

2, and Lemma 6 provides expan-
sions for the irreducible factors of this, namely r2

1 and
r2

2 + r2
3−d2

1 . If we again let p1 and q1 be the invariant
part and the annihilated part of r2

1, respectively, and
now let p′1 and q′1 be the similar parts of r2

2 + r2
3−d2

1 ,
then N1 = 2(p1 +q1)(p′1 +q′1)

2. Reasoning along the
lines of the proof of Lemma 7 will then provide an
expansion for N1.

In fact, proceeding in this way, it is seen that the
invariant part (i.e. AG -component) and the annihi-
lated part (i.e. N -component) of 3(r2

2 + r2
3−d2

1)
2 are

as specified in the appendix. Moving forward with
this information, one next discovers that the invariant
and annihilated parts of 3r2

1(r
2
2+r2

3−d2
1)

2 are as given
in the appendix.

Now, using Lemmas 2 and 6, we have
L0 = (XH + 1)YH N0 + 1/6 [(3 − XH)Y1 − YHX1 −
2XHYH ]N1 + 1/6 [(3− XH)Y2 − YHX2 − 2XHYH ]N2 +
1/6 [(3− XH)Y3 −YHX3 − 2XHYH ] N3 −YH N4. Like-
wise, R0 = 1/2(Y 2

H − (XH − 1)2)N0 + 1/6 [(3 +

XH)X1−YHY1 +X2
H −Y 2

H + 3]N1 + 1/6 [(3+XH)X2−
YHY2 + X2

H −Y 2
H + 3]N2 + 1/6 [(3 + XH)X3 −YHY3 +

X2
H −Y 2

H +3] N3− (1+XH)N4.
But, 1/6 [(3 − XH)Y1 − YHX1 − 2XHYH ]N1 +

1/6 [(3 − XH)Y2 − YHX2 − 2XHYH ]N2 + 1/6 [(3 −
XH)Y3 − YHX3 − 2XHYH ]N3 is clearly invariant,
and indeed is just three times the invariant part of
1/6 [(3 − XH)Y1 − YHX1 − 2XHYH ]N1. This helps
to simplify the computations by using reasoning

similar to the proof of Lemma 7. Similarly for
1/6 [(3+XH)X1−YHY1 +X2

H −Y 2
H + 3] N1 + 1/6 [(3+

XH)X2−YHY2 +X2
H −Y 2

H + 3] N2 + 1/6 [(3+XH)X3−
YHY3 +X2

H −Y 2
H +3] N3.

For both L0 and R0, the N0 and N4 parts are sim-
ply a matter of multiplying the expressions already
achieved for N0 and N4 by a couple of simple elements
of AG , and so these present no further difficulties. Af-
ter obtaining suitable expressions for the parts of both
L0 and R0, and using the expansion for d2

i in Lemma
6, the equations in the theorem can immediately be
confirmed.

Theorem 1 from (Rieck, 2014) will now be
essentially restated, as Corollary 1 here, and proved.
However, the proof here does not rely on the some-
what intricate geometric details found in (Rieck,
2014). Instead, if follows rapidly from the present
article’s Theorem 1, by means of an invertible linear
transformation.

Corollary 1. A certain rational expression of
d1,d2,c1,c2 and c3 can be expressed in terms of x,y,z
and the control points coordinates as follows:

[d2
1(1− c2

2)−d2
2(1− c2

1) ]/η2 = 2(1+x3)y3
y1−y2

+

y3
y1−y2

[
y2− (x−1)2

]
+ 1+x3

y1−y2
[2(x+1)y] +{

(1+2x3)y3
y1−y2

− y3
y1−y2

(
y2− x2

)
− 1+x3

y1−y2
(2xy)

+ 2(x1+x2)x3
y1−y2

y − 2(x1+x2)y3
y1−y2

x
}
· 1−x2−y2

z2 .

(Similar expressions result by permuting the indices.)

Proof. The function on the left side of the equation
is another example of a function of the form (4) that
satisfies (5). The parameters for this are α = d2

1 −d2
2 ,

β = 0, γ1 = d2
2 , γ2 =−d2

1 and γ3 = 0. It is possible to
write it as a linear combination of L , R and 1, specif-
ically, as [(1+ x3)L + y3R + 2(1+ x3)y3]/(y1− y2).
To see this, note the following equalities of vectors:

2(1+ x3)
(
(1− x1)y1, (1− x2)y2, (1− x3)y3,

−(y1 + y2 + y3)
)

+ 2y3
(
(1+ x1)x1, (1+ x2)x2,

(1+ x3)x3,−(1+ x1 + x2 + x3)
)

+ 2(1+ x3)y3
(
−1, −1, −1, 2

)
=

2
(

y1− y3− x1y1− x3y3 + x1y3 + x3y1− x1x3y1

+ x2
1y3, y2− y3− x2y2− x3y3 + x2y3 + x3y2− x2x3y2

+ x2
2y3, 0, −y1− y2− x1y3− x2y3− x3y1− x3y2

)



= 2(y1− y2)
(

1− x1x3− y1y3, −1+ x2x3 + y2y3,

0, 0
)
= (y1− y2)

(
d2

2 , −d2
1 , 0, 0

)
.

The middle equality follows from Lemma 1. It then
follows from (6) that [(1 + x3)L + y3 R + 2(1 +

x3)y3)]/(y1− y2) = [d2
1(1− c2

2)− d2
2(1− c2

1) ]/η2.

By Theorem 1, this also equals[
(1+ x3) {[(XH −1)y+YH(1+ x)−2xy]·

(1− x2− y2)z−2 +2(1+ x)y} + y3·
{ [ (x− (XH +1)/2)2− (y−YH/2)2+

(Y 2
H − (XH −1)2)/4 ] (1− x2− y2)z−2 +

(y2− (x−1)2) }+2(1+ x3)y3
]
/(y1− y2).

The right-hand side of the corollary can be produced
from this by applying Lemma 1 a couple times.

Unlike the functions L and R which are invariant
under the group action of S3, i.e. under permutations
of the subscripts, the function in Corollary 1 does
not have this symmetry, and in fact is antisymmetric
when interchanging the indices 1 and 2. By cycling
the indices, two similar functions are produced.
While the sum of all three of these functions is zero,
any two of them are linearly independent. Let us
refer to these functions as “the triplet.” Since each
of these is obtained as a linear combination of L ,
R and 1, it is reasonable to ask about inverting this
process. This is indeed possible, and allows for a way
to prove Theorem 1 in this paper based on Theorem
1 in (Rieck, 2014).

Second proof of Theorem 1. Theorem 1 in (Rieck,
2014) can be rewritten in the form presented in Corol-
lary 1 here. So this corollary is valid. Examining the
proof that was presented for this corollary, and con-
sidering the symmetry involved in permuting indices
here, it is easily discovered that there is a certain two-
by-two constant matrix and a certain constant vec-
tor, such that two of the triplet functions can be ob-
tained by multiplying the constant matrix by the vec-
tor [L R ]T and then adding the constant vector. Using
a particular pair from the triplet, it is seen this matrix
is [

1+x2
y3−y1

y2
y3−y1

1+x3
y1−y2

y3
y1−y2

]
.

The determinant of this is generically non-zero, and
so the process can be reversed to obtain L and R from
two of the functions in the triplet. Using the fact that
Corollary 1 has already been established, the reason-
ing in the above proof can now simply be “run in re-
verse” to establish the current paper’s Theorem 1.

4 THE DISCRIMINANT AND A
RELATED RATIONAL
FUNCTION

All of the many algebraic approaches to truly solv-
ing Grunert’s system, including Grunert’s original ap-
proach (Grunert, 1841), invariably involve a quar-
tic polynomial with quite a complicated discriminant.
This discriminant is not what we shall mean when
speaking about the discriminant of the system (1),
though the latter is necessarily a factor of the former.
Both are polynomials in the parameters of the system,
but the discriminant of the system has these important
properties:

(i) it vanishes for specific values of the parame-
ters if and only if these parameters produce a
repeated solution to the system,

(ii) its sign provides useful information as to the
number of real-valued solutions to the system,

(iii) it is square-free, meaning that no non-constant
irreducible factor occurs with a multiplicity
greater than one.

In the case of Grunert’s system, it is known that
a solution point (i.e. a point (x,y,z) that solves the
combined system (1) and (2)) is a repeated solution
point if and only if it is on the danger cylinder, as
already mentioned. Expressed in terms of r1, r2 and
r3, this condition can be stated algebraically (Rieck,
2011) as follows:

d2
1d2

2d2
3 +(d2

2 +d2
3 − r2

1)r2r3 +(d2
3 +d2

1 − r2
2)r3r1

+ (d2
1 +d2

2 − r2
3)r1r2−d2

1r4
1−d2

2r4
2−d2

3r4
3 = 0.

(7)

Expressed in Cartesian coordinates, this becomes 4∆ ·
(x2+y2−1) = 0, but since the control points triangle
is non-degenerate, this just means x2 + y2 = 1, which



is the equation of the danger cylinder. The discrimi-
nant of Grunert’s system can intuitively be understood
as starting with the Grunert system (1), supplement-
ing this system with equation (7), and then eliminat-
ing r1, r2 and r3 from the resulting system of four
equations to obtain a polynomial in the parameters of
(1), i.e. the c’s and d’s.

However, to avoid certain technical complica-
tions, it has long been recognized that it is better to
work with homogeneous equations when performing
such eliminations. For this purpose, let us introduce
a new variable s, and regard that the original ri are to
be replaced with ri/s (i = 1,2,3). The augmented and
homogeneous system of equations is thus

r2
2 + r2

3−2c1r2r3−d2
1s2 = 0

r2
3 + r2

1−2c2r3r1−d2
2s2 = 0

r2
1 + r2

2−2c3r1r2−d2
3s2 = 0

d2
1d2

2d2
3s4 +(d2

2s2 +d2
3s2− r2

1)r2r3

+ (d2
3s2 +d2

1s2− r2
2)r3r1

+ (d2
1s2 +d2

2s2− r2
3)r1r2

− d2
1r4

1−d2
2r4

2−d2
3r4

3 = 0.

(8)

As a system of four homogeneous equations in
four variables (r1,r2,r3 and s), this system is well
suited to the elimination of these variables using a
multi-polynomial resultant (cf. Section 3.2 of (Cox
et al., 2004)). This is an polynomial in the c’s and the
squares of the d’s, but we will treat these differently,
usually regarding the d’s as fixed parameters having
to do with the fixed positions of the control points.

On the other hand, we will want to think about a
camera pose as changing dynamically. When we al-
low such movement, the c’s will of course change. In
this way, the multi-polynomial resultant will be re-
garded as a polynomial in c1, c2 and c3, having coef-
ficients that are polynomials in d2

1 , d2
2 and d2

3 .
Apart from a nonzero constant factor (of no con-

cern), there is a unique square-free polynomial of the
same sort, whose non-constant irreducible factors are
the same as those of the multi-polynomial resultant.
It is this square-free polynomial that will here be re-
ferred to as the “discriminant” of Grunert’s system
(1). It vanishes if and only if (1) has a repeated so-
lution, i.e. a solution point on the danger cylinder.

The coefficients of the c-monomials depend on
the parameters for the control points. These coeffi-
cients could be expressed in terms of d2

1 , d2
2 and d2

3 ,
but in the new approach for finding the discriminant,
developed below, the parameters x1, x2, x3, y1, y2 and

y3 will be used instead. Recall that xH = x1 + x2 + x3,
yH = y1 + y2 + y3, and that Lemmas 4 and 5 shows
how to express ∆, d2

1 , d2
2 and d2

3 in terms of x1, x2,
x3, y1, y2 and y3. The new approach is quite different
than the elimination approach just outlined. It is
based on and expedited by Theorem 1, and also
requires the following four lemmas.

Lemma 12. For indeterminates L and R, let D =

[L2 +(R+1)2]2 + 8(R+1)[(R+1)2−3L2]

+ 18[L2 +(R+1)2] − 27.

(i) If L = 2(x+1)y and R = y2− (x−1)2, then D =

(x2 + y2−1)2 [ (x2 + y2)2 +8x(3y2− x2)

+18(x2 + y2)−27 ].
(ii) y [L − 2(x + 1)y ] − (x + 1) [R − y2 + (x −

1)2 ] = (x−XH)(x2 + y2−1)2 /z2.

(iii) If L = L and R = R , then the quantity D equals
p(XH ,YH ; x,y,z2) (x2 + y2− 1)2 z−8 for a poly-
nomial p(XH ,YH ; x,y,z2).

Proof. Items (i) and (ii) can be checked directly, us-
ing Theorem 1 for item (ii). We turn now to (iii). Us-
ing Theorem 1 again, treat L and R as polynomials
in XH , YH , x, y and z−2. To simplify the presenta-
tion here, let L0, L1, R0, R1 and Γ respectively denote
2(x+1)y, 2xy+(1−XH)y−YH(1+x), y2−x2 +2x,
y2− x2 +(1+XH)x−YHy−XH and x2 + y2− 1. So
L = L0 + L1 Γz−2 and R +1 = R0 + R1 Γz−2.

We start by computing D modulo Γ2, observ-
ing first that L2 ≡ L2

0 + 2L0L1Γz−2 and (R +

1)2 ≡ R2
0 + 2R0R1Γz−2. From these we also get

(R + 1)3 ≡ R3
0 + 3R2

0R1Γz−2 and (R + 1)L2 ≡
R0L2

0 + 2R0L0L1Γz−2 + L2
0R1Γz−2. Additionally

we get, L4 ≡ L4
0 + 4L3

0L1Γz−2, (R + 1)4 ≡
R4

0 + 4R3
0R1Γz−2, and L2(R + 1)2 ≡ L2

0R2
0 +

2L2
0R0R1Γz−2 +2R2

0L0L1Γz−2.
Thus, D ≡ [ (L2

0 + R2
0)

2 + 8R0(R2
0 − 3L2

0) +

18(L2
0 +R2

0)− 27 ] + [4L3
0L1 + 4R3

0R1 + 4L2
0R0R1 +

4R2
0L0L1+24R2

0R1−48R0L0L1−24L2
0R1+36L0L1+

36R0R1 ] · Γz−2. The first part of this is congruent to
zero, i.e. divisible by Γ2, by part (i). To establish that
D is divisible by Γ2, it suffices now to show that the
above bracketed coefficient of Γz−2 is divisible by Γ.
Now, item (ii) means that yL1 ≡ (x+ 1)R1, modulo
Γ. So in computing the coefficient of Γz−2 modulo
Γ, we can identify yL1 with (x+1)R1. Expanding L0

and R0 then leads quickly to zero (modulo Γ). Thus
D equals Γ2 times a polynomial in x, y and z−2. A



quick check reveals that the most negative power of
z resulting from the computations is z−8, and so part
(iii) is now established.

Lemma 13. The polynomial p(XH ,YH ; x,y,z2) in
Lemma 12, part (iii), is irreducible, as a polynomial
in all five quantities, XH , YH , x, y and z2.

Proof. The general p(XH ,YH ; x,y,z2) is very com-
plicated, so let us start with the version of this for
the equilateral triangle case: p(0,0; x,y,z2). By
direct computation, this is seen to equal [(x2 +

y2)2 + 8x(3y2− x2)+ 18(x2 + y2)− 27]z8 + 4[(x2 +

y2)3 +7x(3y2−x2)(x2 +y2)+13(x2 +y2)2 +3x(x2−
3y2)− 18(x2 + y2)]z6 + 2[3(x2 + y2)4 + 18x(3y2 −
x2)(x2 + y2)2 + (3x2 + y2)(9x4 + 18x2y2 + 25y4) +

12x(x2 − 3y2)(x2 + y2) − 39(x2 + y2)2 + 6x(x2 −
3y2) + 9(x2 + y2)]z4 + 4(x2 + y2 − 1)[(x2 + y2)4 −
5x(x2 − 3y2)(x2 + y2)2 + (7x6 + 3x4y2 + 33x2y4 +

5y6)− x(x2 − 3y2)(x2 + y2)− 6xy2 − 4(x2 + y2)2 +

2x3]z2 + (x2 + y2− 1)2[(x2 + y2)2 + 2x(3y2− x2)+

(x2 + y2)]2.
Now, z8 is the highest power of z, and its coeffi-

cient is (x2 + y2)2 + 8x(3y2− x2)+ 18(x2 + y2)− 27.
This is the polynomial for the standard deltoid, which
is known to be irreducible. So if p(0,0; x,y,z2) has
a non-trivial factorization into a product of two non-
constant factors, then, up to rescaling by constant fac-
tors, one of the non-constant factors must be either (i)
(x2 + y2)2 +8x(3y2− x2)+18(x2 + y2)−27, or (ii) a
monic polynomial in z2 whose highest z-degree term
is z2, z4 or z6.

Since (x2+y2)2+8x(3y2−x2)+18(x2+y2)−27
does not divide each of the coefficients powers of z
in p(0,0; x,y,z2), this rules out case (i). To rule out
case (ii), set x = 1 and y = 1, to obtain the polynomial
p(0,0;1,1,z) = 29z8+184z6+404z4+352z2+100.
This polynomial is easily seen to be irreducible over
the field of rational numbers, which would be impos-
sible in case (ii). Therefore, p(0,0; x,y,z2) is irre-
ducible.

Similar reasoning is used now to move from
p(0,0; x,y,z2) to the general p(XH ,YH ; x,y,z2). If
p(XH ,YH ; x,y,z2) had a non-constant factor that
was just a polynomial of XH and YH , then this
would divide the coefficients for all of the mono-
mials xiy jz2k. But, as with p(0,0; x,y,z2), di-
rect inspection reveals that the coefficient of z8 in
p(XH ,YH ; x,y,z2) is again (x2+y2)2+8x(3y2−x2)+

18(x2 + y2)− 27. Any other non-trivial factorization
of p(XH ,YH ; x,y,z2) would result in a non-trivial fac-
torization of p(0,0; x,y,z2). Since p(0,0; x,y,z2) is
irreducible, we must conclude that p(XH ,YH ; x,y,z2)

is also irreducible.

Lemma 14. Let P(u0,u1,u2,u3) be a non-constant
polynomial in four indeterminates. Consider taking
P(c1c2c3, c2

1, c2
2, c2

3) and applying substitutions from
Lemma 5 to convert this to a rational function in x, y
and z, whose denominator is a positive power of the
expansion of 8r2

1r2
2r2

3. Then the resulting numerator
cannot be a polynomial that is independent of z.

Proof. For brevity, let us here write R1, R2, R3, R̄1,
R̄2, and R̄3 to denote r2

1, r2
2, r2

3, r2
2 + r2

3 − d2
1 ,

r2
3 + r2

1 − d2
2 and r2

1 + r2
2 − d2

3 , respectively. So, c2
1,

c2
2, c2

3 and c1c2c3 equal 2R1R̄1
2, 2R2R̄2

2, 2R3R̄3
2 and

R̄1 R̄2 R̄3, respectively, divided by 8R1R2R3. Assume
the claim is false and let P be a counterexample. By
applying the Reynolds operator (3) to P, we obtain an
S3-invariant counterexample. Without loss of general-
ity, assume this equals P. So P can be written as an S3-
invariant, homogeneous polynomial in R1, R2, R3, R̄1,
R̄2 and R̄3, divided by a positive power of 8R1R2R3.
We are assuming that when this is expanded in terms
of x, y and z, and simplified, the resulting numerator
is independent of z.

We now show that there are no non-constant,
S3-invariant, homogeneous polynomials in R1, R2,
R3, R̄1, R̄2 and R̄3 that are independent of z, upon
making the substitutions. To do so, assume that
p(R1,R2,R3, R̄1, R̄2, R̄3) is a counterexample, and ex-
pand it to obtain a polynomial p̂(x,y,Z), with Z = z2.
Now look at p̂(0,0,Z); that is, set x= 0 and y= 0. We
will show that this is not a constant, that is, it must de-
pend on Z.

By Lemma 6, upon setting x = 0 and y = 0, the
quantities R1, R2, R3, R̄1, R̄2 and R̄3 become respec-
tively Z + 1, Z + 1, Z + 1, 2Z − 1 + 1/3(X2

H +Y 2
H −

2XHX1 − 2YHY1), 2Z − 1 + 1/3(X2
H +Y 2

H − 2XHX2 −
2YHY2) and 2Z−1+ 1/3(X2

H +Y 2
H −2XHX3−2YHY3).

Call the last three of these λ1(Z), λ2(Z) and λ3(Z).
p̂(0,0,Z) is expressible as a homogeneous polyno-
mial in Z +1, λ1(Z), λ2(Z) and λ3(Z).

Now, being S3-invariant, p̂(0,0,Z) is also ex-
pressible as a polynomial in Z + 1, λ1(Z)+ λ2(Z)+
λ3(Z), λ2(Z)λ3(Z)+λ3(Z)λ1(Z)+λ1(Z)λ2(Z) and
λ1(Z)λ2(Z)λ3(Z). These equal Z + 1, 6Z + X2

H +



Y 2
H−3, 12Z2 +4(X2

H +Y 2
H−3)Z+(2X3

H−6XHY 2
H−

5X2
H − 5Y 2

H + 3) and 8Z3 + 4(X2
H + Y 2

H − 3)Z2 +

2(2X3
H − 6XHY 2

H − 5X2
H − 5Y 2

H + 3)Z + (X4
H + Y 4

H +

2X2
HY 2

H −4X3
H +12XHY 2

H +4X2
H +4Y 2

H −1).
Calling these polynomials q0(Z), q1(Z), q2(Z)

and q3(Z), respectively, a Groebner basis with
slack variables can be generated to establish that
there is only one syzygy relating these polynomials:
12q0(Z)2−8q0(Z)3−4q0(Z)q1(Z)+4q0(Z)2q1(Z)−
q1(Z)2 + 4q2(Z)− 2q0(Z)q2(Z) + q3(Z) = 0. That
is, the polynomial 12Q2

0− 8Q3
0− 4Q0Q1 + 4Q2

0Q1−
Q2

1+4Q2−2Q0Q2+Q3 in indeterminates Q0, Q1, Q2

and Q3 generates a principal ideal containing all of
the polynomials in these for which the substitutions
Qi → qi(Z) (i = 0,1,2,3) result in zero. By adding
constants to these, we obtain the set S containing all
of the polynomials in Q0, Q1, Q2 and Q3 that have the
property that they become constant upon making the
substitutions.

We are seeking a nonconstant polynomial in Z+1,
λ1(Z)+ λ2(Z)+ λ3(Z), λ2(Z)λ3(Z)+ λ3(Z)λ1(Z)+
λ1(Z)λ2(Z) and λ1(Z)λ2(Z)λ3(Z) such that the corre-
sponding polynomial in Q0, Q1, Q2 and Q3 is a mem-
ber of S. However, since p̂(0,0,Z) is homogeneous
as a polynomial in Z+1, λ1(Z), λ2(Z) and λ3(Z), the
polynomial in Q0, Q1, Q2 and Q3 must be weighted
homogeneous with respect to assigning weights 1, 1,
2 and 3 to Q0, Q1, Q2 and Q3, respectively. Since each
polynomial in S is of the form 12Q2

0−8Q3
0−4Q0Q1+

4Q2
0Q1−Q2

1+4Q2−2Q0Q2+Q3 times another poly-
nomial in Q0, Q1, Q2 and Q3, plus a constant, this
quickly yields a contradiction.

Lemma 15. Let R be a unique factorization domain.
Let R′ denote the polynomial ring R[c1,c2,c3] (with
c1, c2 and c3 being treated as indeterminates here).
Let R′′ be the subring R[c2

1,c
2
2,c

2
3,c1c2c3], consisting

of polynomials generated by c2
1, c2

2, c2
3 and c1c2c3.

For q ∈ R′, the following are equivalent:

(i) q ∈ R′′

(ii) q is left invariant whenever any two of c1, c2

and c3 are negated
(iii) each monomial in q involves powers of c1, c2

and c3 that are all even or all odd.

Moreover, if q ∈ R′′, irreducible as an element
of R′′, but reducible as an element of R′, then, writ-
ing q = q1 · · ·qk (k > 1) with non-constant irreducible

q1, ...,qk ∈ R′, either k = 2 or k = 4, and up to scaling
by constant factors, each qi can be converted to any
other q j by negating a pair of c’s. (A “constant” here
means any element of R.)

In the k = 2 case, q1 and q2 are each invariant
under the negation of some pair of c’s, but are inter-
changed under the other two negations of pairs of c’s,
up to constant factors. In the k = 4 case, no qi is fixed
by any of the negations of a pair of c’s, and in fact,
these negations map qi to the three other q j, up to
constant factors.

Proof. The first claim is easily established by check-
ing that (i) implies (ii), (ii) implies (iii) and (iii) im-
plies (i). Now assume the hypotheses of the second
claim. Since R is a UFD, so too is R′. The three trans-
formations that each negate a pair of c’s, along with
the identity transformation, form a Klein 4-group act-
ing on R′. It also acts on the set {1,2, ...,k}, where
a transformation that negates two of the c’s takes i to
j, if the polynomial qi is transformed into the polyno-
mial q j, up to a constant factor.

Consider the orbit of 1 ∈ {1,2, ...,k} under this
group action. The product q′ of all of the qi as i
ranges over this orbit is a non-constant factor of q,
and is invariant under the group action, and so is an
element of R′′. Up to a constant factor, q/q′ is also
an element of R′′. By the irreducibility assumption
concerning q in R′′, we must have q′ = q, up to
a constant factor. The group action is therefore
transitive on {1,2, ...,k}, which is only possible if
k = 2 or k = 4. The rest of the lemma follows quickly
by considering the possible actions of the group.

We are now ready to state and prove one of the
principal results of this work.

Theorem 2. Up to a constant factor, the discriminant
of Grunert’s system is the following S3-invariant poly-
nomial in c1,c2 and c3, whose coefficients are polyno-
mials in x1, x2, x3, y1, y2, y3:

{
[L2 + (R +1)2]2 + 18[L2 + (R +1)2]

+ 8(R +1)[(R +1)2 − 3L2] − 27
}

η8.

It has degree twelve as a polynomial in c1, c2 and c3,
and is irreducible. It can be regarded as a polynomial



in c2
1, c2

2, c2
3 and c1c2c3, and can also be expressed as

a rational function of x, y and z2.

Proof. Using (6), and upon cancelling, the quantity in
the theorem becomes a polynomial in x1, y1, x2, y2, x3,
y3, c2

1, c2
2, c2

3 and c1c2c3, because each term inside the
curly braces is a rational function whose denominator
is a power of η2, not exceeding (η2)4. However, we
will mostly need to regard this as a polynomial q =

q(c1,c2,c3) in c1, c2 and c3, whose coefficients are
polynomials in x1, y1, x2, y2, x3 and y3.

Upon making the substitutions suggested by part
(ix) of Lemma 5, q can also be expressed as a rational
function of x, y and z2, whose coefficients are polyno-
mials in x1, y1, x2, y2, x3 and y3. By Lemmas 12 and
13, and part (iv) of Lemma 5, we see that this equals

p(XH ,YH ; x,y,z2)(x2 + y2−1)2 d8
1d8

2d8
3

256r8
1r8

2r8
3 ,

where p(XH ,YH ; x,y,z2) is the irreducible polynomial
in Lemmas 12 and 13, and where r8

1 is written here in
place of [(x−x1)

2+(y−y1)
2+ z2]4, and similarly for

r8
2 and r8

3.
Since the numerator is divisible by x2 + y2 − 1,

it follows that q vanishes whenever values for the
c’s, used as parameters for the combined system (1)
and (2), result in a solution point (x,y,z) that satis-
fies x2 + y2 = 1. This of course means that (x,y,z)
is a multiple solution point. But the discriminant of
Grunert’s system (1) vanishes if and only if this is so.
We see that when this discriminant vanishes, so too
does q. Since the discriminant is square-free, it must
divide q, up to “constant” factors, i.e. factors that are
polynomials in the parameters x1, x2, x3, y1, y2 and y3.

Notice next that q is irreducible as a polynomial of
c2

1, c2
2, c2

3, and c1c2c3. If it could be factored nontriv-
ially as such polynomials, then one of its factors, upon
making the (x,y,z)-substitutions would become a ra-
tional function whose numerator would be divisible
by p(XH ,YH ; x,y,z2), and another factor that would
become a rational function whose numerator would
be divisible by x2 + y2− 1, and be independent of z.
But Lemma 14 ensures that this cannot happen.

As a polynomial in c1, c2 and c3, the quan-
tity q can be seen to have total degree 12. To
see this, we just need to look at the contribu-
tions of the various c1c2c3 terms to [L2η4 +

(R η2 + η2)2]2 + 18[L2η4 + (R η2 + η2)2]η4 +

8(R η2 + η2)[(R η2 + η2)2 − 3L2η4]η2 − 27η8,
so as to produce a c4

1c4
2c4

3 term that does not
vanish. In fact, this term is { [(−2YH)

2 +

((−2(1+XH))+(2))2]2 + 18[(−2YH)
2 + ((−2(1+

XH))+(2))2](2)2 + 8((−2(1+XH))+(2))[(−2(1+
XH))+ (2))2 − 3(−2YH)

2](2) − 27(2)4 }c4
1c4

2c4
3 =

−64∆2 c4
1c4

2c4
3 6= 0.

A further consequence of this unique highest de-
gree term concerns the possible reducibility of q as
a polynomial in c1, c2 and c3 whose coefficients are
polynomials in x1, x2, x3, y1, y2 and y3. Suppose that
q is reducible, and let q1 · · ·qk, with k > 1, be the fac-
torization of q into irreducible polynomials, which is
unique up to scaling by constants. By Lemma 15,
k = 2 or k = 4, and the qi are permuted transitively, up
to constant factors, by the Klein 4-group. Since q is
S3-invariant, i.e. invariant under simultaneously per-
muting the indices of the c’s, x’s and y’s (in the same
way), the case k = 2 is not possible, basically because
the symmetric nature of the indices would break down
in such a factorization.

We are left with the possibility that q = q1q2q3q4,
and that the Klein 4-group permutes the factors tran-
sitively, up to scaling by constant factors. Begin here
by noting that ∆ is a polynomial in x1, x2, x3, y1, y2

and y3 (see Lemma 4), but this does not divide q,
as polynomials in x1, x2, x3, y1, y2, y3, c1, c2 and
c3. Now, since the only highest c-degree term of q
is−64∆2 c4

1c4
2c4

3, it is readily checked that we may as-
sume, after rescaling, that the highest c-degree term of
each qi is

√
∆c1c2c3, and that q =−64q1q2q3q4. But

this is impossible since
√

∆ is not a polynomial in x1,
x2, x3, y1, y2 and y3. Therefore, q does not factor as
q1q2q3q4 either. So q must be irreducible as a polyno-
mial in c1,c2,c3, with coefficients being polynomials
in x1, x2, x3, y1, y2 and y3. Therefore, up to scaling by
a constant, q is the discriminant of the system (1).

Henceforth, let D̂ denote the discriminant of the
Grunert system of equations (1), and let D denote
the rational function D̂ / η8. Now, once again, con-
sider continuously varying the point P, with coordi-
nates (x,y,z), and its associated values of c1, c2 and
c3. As we do this, D̂ will vary as well. It is of practical
concern to wonder when this vanishes, since the num-
ber of solutions to the system can only change when
crossing the surface of such points. If P is on the dan-
ger cylinder, then of course D̂ vanishes, since P itself



Figure 2: two views of a deltoidal surface

Figure 3: a z-cross section (z = 0.3)

is a repeated solution, but there are other points that
cause D̂ to vanishes. Such points have a related solu-
tion point on the danger cylinder.

The surface on which D̂ vanishes is comprised
of the danger cylinder together with another surface
that is mostly wrapped around the danger cylinder.
Let us refer to this other surface as the “deltoidal
surface.” Figure 2 shows two views of half of such
a surface (say z ≥ 0). Here the control points are
(63/65, 16/65),(−5/13, 12/13),(−3/5,−4/5). The control
points and the orthocenter of their triangle are indi-
cated by dots. Figure 3 shows the z = 3/10 slice (cross
section) of the same deltoidal surface.

As z tends to infinite, the z-cross section (i.e.
intersection with a constant-z plane) of the surface
tends to approach a deltoid curve, a behavior that
was described in (Rieck,2015). As discussed there,
this deltoid curve, which is symmetric with respect
to 120-degree rotations, is approached even when the
control points triangle in not equilateral; it happens
for any triangle. Though the deltoidal surface is very
well behaved far away from the control points plane,
it is somewhat erratic near this plane (as suggested
by the figures). A result concerning the z-cross sec-
tions will now be stated, and later proved in Section 7.

Theorem 3. For a fixed value of z with |z| ≥ 3, the
z-cross section of the deltoidal surface is a simple
closed curve that wraps around the outside of a circle

on the danger cylinder. Together these comprise
the set of points on the constant-z plane where the
discriminant vanishes. The closed curve intersects
the circle in three points, which are positioned
symmetrically with respect to 120-degree rotations of
the constant-z plane about the z-axis. Moreover, as
z is allowed to vary, these three points move along
three straight lines on the danger cylinder, and as
|z| → ∞, the simple closed curve tends to a deltoid
curve.

While it certainly does not provide proof, Figure
2 suggests that this theorem might be true, though the
danger cylinder in not shown in this figure. Actually,
preliminary evidence suggests that the lower bound 3
could be replaced with 2, but that the theorem would
certainly be false if a value smaller than 2 was substi-
tuted instead.

Before proving this theorem, we will need to con-
sider a family of surfaces that include as a member,
the surface on which the discriminant vanishes, i.e.
the union of the danger cylinder and the deltoidal sur-
face. The surfaces in question are just the contour
surfaces (i.e. constant-value surfaces) of the quantity
D . Assuming that 0 < |z| < ∞, note that η 6= 0, and
so D vanishes if and only if D̂ vanishes.

To understand these contour surfaces, it is useful
and interesting to also explore the contour surfaces
for L and R . Of course, Theorem 2 shows how to
express D in terms of L and R . Consequently, a con-
tour surface for L intersects a contour surface R in a
curve that is also on a contour surface for D .

5 AN EXAMPLE

Let us now use the example from the pre-
vious section, the one with the control points
(63/65, 16/65),(−5/13, 12/13),(−3/5,−4/5), to provide ev-
idence for the correctness of Theorems 1 and 2. Many
of the computations here still require symbolic ma-
nipulation software to work out, but these computa-
tions are very direct and relatively short. Observe
that XH =−1/65, YH = 24/65, d2

1 = 196/65, d2
2 = 1156/325,

d2
3 = 1936/845, r2

1 = (65−126x+65x2−32y+65y2 +

65z2)/65, r2
2 = (13 + 10x + 13x2 − 24y + 13y2 +

13z2)/13 and r2
3 = (5+6x+5x2 +8y+5y2 +5z2)/5.

Here is a quick check for Theorem 1. Let’s con-
sider the point (x,y,z) = (1,−1,2). Plugging into



the formulas for L and R in Theorem 1, we ob-
tain the numbers −321/65 and 349/260, respectively. We
need to check these numbers against the definitions
for L and R in (6). Using (1) and (2), we find
that r2

1 = 361/65, r2
2 = 125/13, r2

1 = 33/5, c2
1 = 429/625,

c2
2 = 177419/351975, c2

3 = 29604481/38130625 and c1c2c3 =
7601077/14665625. Plugging into (6), gives L = −321/65

and R = 349/260, in agreement with the Theorem 1 for-
mulas.

Let’s switch now to Theorem 2, using the same
control points, but starting with a general point
(x,y,z). When the formulas in Theorem 1 are substi-
tuted for L and R , and d8

1d8
2d8

3 z8 /256r8
1r8

2r8
3 is sub-

stituted for η8, in the formula in Theorem 2, the result
is a constant times (x2 + y2 − 1)2 p(x,y,z2)/r8

1r8
2r8

3,
where p(x,y,z2) is the polynomial given in Part 5 of
the Appendix. Up to a constant factor, this is the same
as p(XH ,YH ,x,y,z2) in Lemma 13, using XH =−1/65,
YH = 24/65.

The surface p(x,y,z2) = 0 is the deltoidal sur-
face, and Figure 3 suggests that there are two points
on this surface for which y = 1 and z = 0.3. Now,
160000 p(x, 1, 0.09) =

61148105928− 26548665624x− 1364362770420x2 − 6152060366712x3 −

15092981650881x4 − 30624594308640x5 − 47135678216400x6 −

37034034576000x7 + 7442527460000x8 + 12070177600000x9 −

25450724000000x10 +11248640000000x11−2856100000000x12,

and this has two real roots, which are approximately
-0.58612 and 0.145677.

Let’s focus on the point (x,y,z) =

(−0.58612, 1, 0.3). This is a point on the del-
toidal surface, that is, p(−0.58612, 1, 0.09) = 0. For
this point, we see from (1) and (2) that r1 = 1.75425,
r2 = 0.369488, r3 = 1.82488, c1 = 0.334679,
c2 = 0.445236 and c3 = 0.711843.

Now, solving (1) using these c values leads
to one other solution for which all of the r’s are
non-negative, namely, r′1 = 2.10316, r′2 = 1.82759
and r′3 = 0.83397. (Symbolic manipulation soft-
ware reveals that this is in fact a double so-
lution to (1).) Then solving (2), using these
r values, yields the solution point (x′,y′,z′) =

(−0.737641,−0.675193, 0.813012). This satisfies
(x′)2 +(y′)2 = 1. That is, this is a point on the danger
cylinder. The point (−0.58612, 1, 0.3) therefore has
a related solution point on the danger cylinder, and
hence the discriminant of the Grunert system must
vanish at (−0.58612, 1, 0.3). (Technically, since this
discriminant is a polynomial function of the c’s, we

are here speaking about the rational function of x, y
and z that results by using (1) and (2) to perform sub-
stitutions.)

Since (−0.58612, 1, 0.3) was a rather arbitrary
point on the deltoidal surface p(x,y,z2) = 0, this sup-
plies evidence for the claim that points (x,y,z) where
p(x,y,z2) vanish are also points where the discrimi-
nant of the Grunert system (1) vanish.

6 A BIRATIONAL
TRANSFORMATION

This section is concerned with a surprising bira-
tional transformation that winds up simplifying the
statement of Theorem 1, putting it into a form that fa-
cilitates discussing limit points as |z| →∞. The trans-
formation is as follows. Define:

µ = [ 2x(x2 + y2 + z2−1)+XH(1− x2− y2) ]

/ ( x2 + y2 +2z2−1 )

ν = [ 2y(x2 + y2 + z2−1)+YH(1− x2− y2) ]

/(x2 + y2 +2z2−1)

ξ = (x2 + y2−1) / (x2 + y2 +2z2−1)

Notice that as |z| → ∞, µ is asymptotic to x, ν is
asymptotic to y, and ξ approaches zero. Substituting
the above formulas into the following formulas
provides a direct proof of the following claim.

Lemma 16.
x = (µ+XH ξ) / (1+ξ)

y = (ν+YH ξ) / (1+ξ)

z2 = (ξ−1)(1− x2− y2) / 2ξ

In this way, there is a birational transformation
between (x,y,z2) and (µ,ν,ξ), meaning that each
member of each of these triples is obtained as a
rational function of the members of the other triple.

Now, using the new coordinate system, Theorem
1 can immediately be rewritten in a more symmetric
form that highlights the significance of the orthocen-
ter of the control points triangle.

Corollary 2. The quantities L and R defined in (6)
can also be expressed as follows:



L = 2
(1+µ)ν − (1+XH)YH ξ2

1 − ξ2

and

R =
[ν2− (µ−1)2] − [Y 2

H − (XH −1)2]ξ2

1 − ξ2 .

A lemma concerning the new coordinates, that
will be required in the next section, is as follows.

Lemma 17. Provided that |z| ≥ 2, we have
µ2 +ν2 = 1 if and only if x2 + y2 = 1.

Proof. Let Z = z2. Then µ2 + ν2 − 1, expressed in
terms of x, y and Z, factors as follows:

(x2 + y2−1) [ 4(x2 + y2 +Z)2 +4(1+XHx+YHy) ·
(1− x2− y2−Z)+(1−X2

H −Y 2
H)(1− x2− y2)

− 4 ] / (x2 + y2 +2Z−1 )2.

The long factor in the numerator is seen to be nonzero,
as follows. Its partial derivative with respect to Z is

8Z + 8(x−XH/4)2 +8(y−YH/4)2

−(X2
H +Y 2

H +8)/2.

Recall that X2
H +Y 2

H < 9 (Lemma 3, part (iii)). The
partial derivative is seen to be positive if Z > 17/16,
which we are assuming to be the case. So the long
factor is increasing as a function of Z. If we substi-
tute Z = 4 into this factor, we get Φ2−Ψ2−4(X2

H +

Y 2
H−1), where Φ = 2[ (x−XH/4)2+(y−YH/4)2 ]+

(X2
H + Y 2

H + 54)/8 and Ψ = XH x + YH y− (X2
H +

Y 2
H + 3)/4. Now, Φ+Ψ = 2(x2 + y2 + 3) ≥ 6 and

Φ−Ψ = 2[ (x−XH/2)2 +(y−YH)
2 +15/2≥ 15/2.

So Φ2−Ψ2 = (Φ+Ψ)(Φ−Ψ)≥ 45. Since (XH ,YH)

is the orthocenter of the triangle, we know by Lemma
3 that X2

H +Y 2
H < 9, and so −4(X2

H +Y 2
H −1)>−32.

Thus, Φ2−Ψ2−4(X2
H +Y 2

H−1)> 45−32 = 13 > 0.
Since the long factor is strictly positive, the claim in
the lemma is confirmed.

Going forward, it will generally be understood,
when considering a point P with Cartesian coordi-
nates (x,y,z), that P is a point in real Euclidean space,
and so z 6= ∞. Of course, when switching to the
(µ,ν,ξ)-coordinates, we can naturally discuss “points

at infinity,” by which we will always mean points with
|z| = ∞, since the (µ,ν,ξ)-coordinates of such points
are just characterized by the condition that ξ = 0.
These points nicely belong when discussing facts in
terms of (µ,ν,ξ)-coordinates. However, there will be
no need to allow |x| or |y| to go to infinity.

We will now revisit the issue of trying to under-
standing all functions of the form (4) that satisfy (5).
Recall from Lemma 11 that L , R and the constant
function 1 form a basis for the linear space of all such
functions. To assist in understanding such functions
better, we will apply the following lemma, which is
basically just an exercise in trigonometry.

Lemma 18. The following equality holds:

cos2φ ·2(1+µ)ν + sin2φ · [ν2− (µ−1)2] =

2[ cosφ · (µ+ cos4φ)+ sinφ · (ν+ sin4φ) ]·
[−sinφ · (µ+ cos4φ)+ cosφ · (ν+ sin4φ) ]

−4cos2 2φsin2φ.

Using Corollary 2, and applying the previous
lemma leads immediately to a proof of the following
lemma concerning linear combinations of L and R .

Lemma 19. The following equality holds:

cos2φ ·L + sin2φ ·R ={ [
cosφ · (µ+ cos4φ)+ sinφ · (ν+ sin4φ)

]
·
[
− sinφ · (µ+ cos4φ)+ cosφ · (ν+ sin4φ)

]
−
[

cosφ · (XH + cos4φ)+ sinφ · (YH + sin4φ)
]

·
[
− sinφ · (XH + cos4φ)+ cosφ · (YH + sin4φ)

]
ξ2}

· [ 2 / (1 − ξ2) ] − 4cos2 2φsin2φ.

In the limit as |z| goes to infinity, and so that ξ→ 0,
µ→ x and ν→ y, this tends towards

2
[

cosφ · (x+ cos4φ)+ sinφ · (y+ sin4φ)
]
·[

− sinφ · (x+ cos4φ)+ cosφ · (y+ sin4φ)
]

− 4cos2 2φsin2φ.

The contour curves for this function of x and y are
rectangular hyperbolas, centered at a point on the
unit circle, specifically, (−cos4φ,−sin4φ).

The phenomenon of generating such a family of
rectangular hyperbolas whose centers form a circle,
by taking linear combinations of two rectangular
hyperbola, has long been understood. For example,



see (Carver, 1956) and (Alperin, 2010). This is
also related to “Feuerbach’s Conic Theorem.” The
following claim is now easily established.

Theorem 4. Every rational function f (c1,c2,c3), of
the form (4) that satisfies (5) is uniquely expressible
as a linear combination of the functions L , R and
the constant function 1, and has the following prop-
erty. Given a varying point P with coordinates x,y
and z, and setting the values of c1, c2 and c3 to match
these coordinates (by means of (1) and (2)), yields
a function g of x, y and z2, defined by g(x,y,z2) =

f (c1,c2,c3). As |z| → ∞, g(x,y,z2) tends either to a
constant function, or to a quadratic function of x and y
whose contours are rectangular hyperbolas, centered
at some point on the unit circle.

Proof. The first part of this is basically just a re-
statement of Lemma 11. Now, Lemma 19 considers
a linear combination of L , R having coefficients
whose squares sum to one. The formula on the right
side is essentially g(x,y,z2) but expressed in terms of
the coordinates (µ,ν,ξ). Of course, |z| → ∞ implies
that µ→ x, ν→ y and ξ→ 0. The limiting behavior
is certainly as described in the theorem, for this case.
But scaling such a function, i.e. multiplying it by a
nonzero constant, does not affect this property. Since
the zero function also satisfies the described limiting
behavior, we now see that any linear combination of
L , R exhibits this behavior. Adding a constant func-
tion to such a function does not affect this limiting
behavior claim. So it is true of all linear combina-
tion of the functions L , R and the constant function 1.

7 A CLASS OF CURVES

In this section, we will explore a class of interest-
ing curves that are directly associated with the con-
tour surfaces for D , including the surface for D = 0.
This latter surface is the surface in xyz-space consist-
ing of points where the Grunert system discriminant
vanishes when it is expanded as a rational function of
x, y and z. This is the union of the danger cylinder
and the deltoidal surface. Each of the curves studied
in this section is the intersection of a contour surface
for L and a contour surface for R .

Figure 4: an example of the curves

The following basic fact will by required a couple
times in this section.

Lemma 20. Given any real numbers λ and ρ, the sys-
tem of equations{

2(x+1)y = λ

y2− (x−1)2 = ρ

has a real-valued solution.

Proof. 1

By the first equation, y = λ/[2(x+1)]. Substitut-
ing into the second equation yields −4+8x2−4x4 +

λ2− 4ρ− 8ρx− 4ρx2 = 0. This is so provided that
x 6= −1, which is so as long as λ 6= 0, which will be
supposed for the moment. Consider the polynomial
−4+8x2−4x4+λ2−4ρ−8ρx−4ρx2 as a continuous
function of x. As x→ ∞, this tends to −∞. But when
x =−1, it equals λ2, which is positive. By continuity,
there is a value of x > −1 that makes this polyno-
mial equal zero. This together with the corresponding
value of y provide a real-valued solution to the sys-
tem. This leaves the case where λ = 0. If ρ ≥ −4,
then x = −1 and y =

√
4+ρ provides a real-valued

solution. Otherwise, take y = 0 and x = 1+
√−ρ to

obtain a real-valued solution.

By taking a contour surface for L , and intersect-
ing it with a contour surface for R , we obtain a one-
dimensional subspace that has some interesting and
useful properties. Though this subspace will gener-
ally be disconnected, we will here refer to the whole

1this short proof was essentially provided by a reviewer



one-dimensional subspace as a “curve.” By definition,
L and R are constant along such a curve. The curve
actually lies on a unique contour surface for every
non-constant function of the form (4) that satisfies (5).

For instance, Figure 4 shows such a curve and
three such contour surfaces containing the curve.
(It also shows the control points and the circle
containing them.) The contour surfaces shown in
the figure happen to be for the function considered
in Corollary 1 and the two functions obtained from
it by cycling the indices. But again, for this curve,
every non-trivial function of the form (4) satisfying
(5) has a contour containing it. However, there is
considerably redundancy in these contour surfaces,
as explained in the following lemma.

Lemma 21. Fix real values, λ and ρ. The two
surfaces corresponding to the equations L = λ and
R = ρ intersect in a curve γ with the following
properties. Every non-constant function f of the
form (4) and satisfying (5) has a unique contour
surface containing γ. Multiplying f by a non-zero
constant does not alter the corresponding contour
surface. Neither does adding a constant to f .
Therefore, allowing f to vary now, we obtain (only) a
one-dimensional family of surfaces containing γ

Proof. The equations L = λ and R = ρ have com-
mon real solutions that constitute a one-dimensional
subspace, i.e. a curve. To see this, work with the
(µ,ν,ξ) coordinates, and fix for the moment, a value
for ξ. The equations in µ and ν are thus 2(1+µ)ν =

λ(1−ξ2)+2(1+XH)YHξ2 and ν2−(µ−1)2 = ρ(1−
ξ2)+Y 2

H − (XH − 1)2. By Lemma 20, these intersect
in at least one real point. By now varying ξ, we see
that the common real solutions for L = λ and R = ρ

do indeed form a one-dimensional subspace γ.
Now, let f be any function of the form (4) sat-

isfying (5). Express it as f = aL + bR + c for real
constants a, b and c (a unique expression). Consider
the equation f = aλ+bρ+c. Each point on γ satisfies
this equation since L = λ and R = ρ for such points.
So γ is contained in a contour of f . Now, if d and e
are also real numbers, with d 6= 0, then the function
g = d f + e is uniquely expressed as a linear combi-
nation of L , R and 1 as g = adL + bdR +(cd + e).
The unique contour surface of g containing γ is thus
given by the equation g = adλ+bdρ+(cd + e). But
since g = d f +e, this is equivalent to f = aλ+bρ+c.

Therefore the contour surfaces for f and g are the
same.

Since the space of functions of the form (4) that
satisfy (5) is three-dimensional, and since we have
seen that each of these functions is a member of a
two-dimensional family of functions that produce
the same contour surface containing γ, it follows
that the family of contour surfaces containing γ is
one-dimensional at the most. But Lemma 19 makes it
clear that there is at least a one-dimensional family of
contour surfaces containing γ. Therefore, the family
of contour surfaces containing γ is one-dimensional.

By Theorem 2, D (= D̂/η2) is also constant along
any of the special curves being considered here. In
fact, the following is immediately clear.

Lemma 22. Each contour surface for D is a disjoint
union of the special curves. In particular the union
of the danger cylinder and the deltoidal surface is a
disjoint union of such curves, since this surface is the
surface corresponding to D = 0 (which is the same
as D̂ = 0).

Letting Ξ = ξ2, it is useful to think about the
images of the curves in (µ,ν,Ξ) - space. It turns
out that the image of such a curve has a rational
parameterization.

Lemma 23. For fixed real numbers µ0, ν0, κ and φ,
consider the rational curve in (µ,ν,Ξ) - space, pa-
rameterized by t as follows:

2(1+ t) µ = 2µ0 + 2 [−sin2φ

+ µ0 (1− sin2φ)+ν0 cos2φ ] t
+ [−cos4φ− sin2φ

+ µ0 (1− sin2φ)+ν0 cos2φ ] t2

2(1+ t) ν = 2ν0 + 2 [−cos2φ

+ µ0 cos2φ+ν0 (1+ sin2φ) ] t
+ [−sin4φ− cos2φ

+ µ0 cos2φ+ν0 (1+ sin2φ) ] t2



2κ(1+ t)2 Ξ = 4(µ2
0 +ν2

0−1) t
+ 2 [−3−2µ0 sin2φ+µ2

0 (3−2sin2φ)

− 2ν0 cos2φ+4µ0ν0 cos2φ

+ν2
0 (3+2sin2φ) ] t2

+ 4 [ µ0 (sin2φ−1)(2sin2φ+1)
+ µ2

0 (1− sin2φ)−ν0 cos2φ(2sin2φ+1)
+2µ0ν0 cos2φ+ν2

0 (1+ sin2φ) ] t3

+ [ (1− sin2φ)(1+2sin2φ)2

− 2µ0 (1− sin2φ)(1+2sin2φ)

+ µ2
0 (1− sin2φ)

− 2ν0 cos2φ(1+2sin2φ)

+ 2µ0ν0 cos2φ+ν2
0 (1+ sin2φ) ] t4

This curve satisfies the following system of equations:

{
2(µ+1)ν = 2(µ0 +1)ν0 + κ cos2φ ·Ξ
ν2− (µ−1)2 = ν2

0− (µ0−1)2 + κ sin2φ ·Ξ.
(9)

Proof. Using Newton’s dot notation, differentiating
the system (9) with respect to t yields{

2ν
.
µ+2(1+µ)

.
ν = κ cos2φ ·

.
Ξ

2(1−µ)
.
µ+2ν

.
ν = κ sin2φ ·

.
Ξ.

Solving this for
.
µ and

.
ν yields 2(µ2 +ν2−1)

.
µ = [ cos2φν− sin2φ(1+µ) ]κ

.
Ξ

2(µ2 +ν2−1)
.
ν = [ cos2φ(µ−1)+ sin2φν ]κ

.
Ξ

(10)

One can multiplying both sides of these equa-
tions by 4(1 + t)3, and rewrite the first one as(
[2(1 + t)µ ]2 + [2(1 + t)ν ]2 − [2(1 + t) ]2

)
[2(1 +

t)
.
µ ] =

(
cos2φ [2(1+ t)ν ]−sin2φ [2(1+ t)+2(1+

t)µ ]
)
[2κ(1+ t)2

.
Ξ ], and similarly for the other equa-

tion. This makes it comparatively easy to “plug in”
and check that the formulas for the curve satisfy the
differential equations. A few applications of the dou-
ble angle formula are involved in doing so. Returning
to the system of algebraic equations (9), and setting
t = 0, we see that in this case, µ = µ0 and ν = ν0 and
that the algebraic equations are valid. This together
with the validity of the differential equations estab-
lishes that the algebraic equations are valid in general.

From the Cartesian coordinates (x,y,z) of any
point P in physical space, apart from the control
points, equations (1) and (2) provide corresponding
values for c1, c2 and c3. Assuming that P is not
on the control points plane, i.e. z 6= 0, by part (iv)
of Lemma 5, it is seen that η2 6= 0, and so there
are corresponding values for L and R , as defined
by (6). The totality of points that share the same
values of L and R as the point P comprise one of
the special curves being discussed in the section.
Of course, this curve includes the point P itself.
Now, as long as x2 + y2 + 2z2 6= 1, then P also
has (µ,ν,ξ)- coordinates, and so we can also think
about its corresponding curve in (µ,ν,ξ)-space, or
in (µ,ν,Ξ)-space. These include points for which
ξ = 0 (Ξ = 0). These will be referred to as “points at
infinity corresponding to P.”

Theorem 5. Let P̂ be a point in physical space, with
coordinates (x̂, ŷ, ẑ) for which ẑ 6= 0 and x̂2 + ŷ2 +

2ẑ2 6= 1. P̂ lies on a unique curve γ consisting of all
points P sharing the same values of L and R as P̂.

There exists at least one point at infinity for γ. Let
P0 be one of these, and let (µ0,ν0) denote the (µ,ν)-
coordinates of P0. γ contains, as a sub-curve, one of
the curves described in Lemma 23, using these par-
ticular values for µ0 and ν0.

Moreover, with (µ̂, ν̂, Ξ̂) being the values of
(µ,ν,Ξ) for P̂, and with (µ,ν,Ξ) denoting these co-
ordinates for an arbitrary point P on γ, the constants
κ and φ satisfy the requirements that

κ cos2φ · Ξ̂ = 2(µ̂+1)ν̂−2(µ0 +1)ν0 and
κ sin2φ · Ξ̂ = ν̂2− (µ̂−1)2−ν2

0 +(µ0−1)2.
(11)

κ and φ also satisfy the equations

κ cos2φ · (1− Ξ̂) =

2(XH +1)YH −2(µ̂+1)ν̂ and
κ sin2φ · (1− Ξ̂) =

Y 2
H − (XH −1)2− ν̂2 +(µ̂−1)2,

(12)
as well as the equations

κ cos2φ = 2(XH +1)YH −2(µ0 +1)ν0 and
κ sin2φ = Y 2

H − (XH −1)2−ν2
0 +(µ0−1)2,

(13)
which implies that




2(µ+1)ν = 2(XH +1)YH Ξ

+ 2(µ0 +1)ν0 (1−Ξ)

ν2− (µ−1)2 = Y 2
H − (XH −1)2 Ξ

+ [ν2
0− (µ0−1)2] (1−Ξ).

(14)

Proof. γ contains P, and by definition, L and R are
constant when restricted to γ. So, by Corollary 2, we
obtain the following for points (µ,ν,Ξ) along γ :

(1− Ξ̂) [ (1+µ)ν− (1+XH)YH Ξ ] =

(1−Ξ) [ (1+ µ̂)ν̂− (1+XH)YH Ξ̂ ] and
(1− Ξ̂) [ ν2− (µ−1)2)− [Y 2

H − (1−XH)
2]Ξ ] =

(1−Ξ) [ ν̂2− (µ̂−1)2)− [Y 2
H − (1−XH)

2] Ξ̂ ].

These yield

(1− Ξ̂) · 2(1+µ)ν =

[ 2(1+XH)YH −2(1+ µ̂)ν̂ ] Ξ

+ [ 2(1+ µ̂)ν̂−2(1+XH)YH Ξ̂ ]

and
(1− Ξ̂) · [ ν2− (µ−1)2) ] =

[ Y 2
H − (XH −1)2− ν̂2 +(µ̂−1)2) ] Ξ

+ [ ν̂2− (µ̂−1)2− [Y 2
H − (XH −1)2] Ξ̂ ].

These are equations of the form (9), using the values
of κ and λ suggested by (12). The values of µ0 and ν0

must satisfy

2(µ0 +1)ν0 = 2(1+µ̂)ν̂−2(1+XH )YH Ξ̂

1−Ξ̂

and

ν2
0− (µ0−1)2 =

ν̂2−(µ̂−1)2−[X2
H−(XH−1)2]Ξ̂

1−Ξ̂

Such values for µ0 and ν0 exist by Lemma 20. So
points on γ satisfy (12) for some µ0 and ν0. But for
these particular parameter values, the reasoning can
be run in reverse. That is, points satisfying (9) agree
concerning their values of L and R , and so are on
γ. The point (µ0,ν0,0) is one such point, and of
course this is a “point at infinity” when considering
the original (x,y,z)-space. Of course, (11) now holds
by (9), since (µ̂, ν̂, Ξ̂) is on γ. Adding (11) and (12)
yields (13), and substituting this into (9) yields (14).
Now, the particular parameterized curve in Lemma
23 also satisfies (9), using the same parameters, and
so this curve must at least be a sub-curve of γ.

It turns out that the special curves considered
in this section are actually the integral curves of a
certain vector field.

Lemma 24. In (µ,ν,ξ)-space, except at points on the
danger cylinder and possibly some other points with
|z| < 2, the special curves are integral curves for the
following non-vanishing vector field:(

{ [ (XH −1)2−Y 2
H ] (µ+1) + 2(XH +1)YH ν

−(µ+1)[ (µ−1)2 +ν2 ] } ξ ,

{ 2(XH +1)YH (µ−1) + [Y 2
H − (XH −1)2 ]ν

−ν [ν2 + (µ−1)(µ+3) ] } ξ ,

(µ2 +ν2−1)(1−ξ2)
)

Proof. Starting with an arbitrary point (µ̂, ν̂, ξ̂), let γ

be the special curve containing it. Now use (12) to
substitute into (10), and evaluate this at (µ,ν,ξ) =

(µ̂, ν̂, ξ̂). Since (µ̂, ν̂, ξ̂) is arbitrary (and we no longer
need to consider any other point), let us rename it
(µ,ν,ξ) for simplicity. Then,

2(µ2 +ν2−1)
[ .

µ.
ν

]
=

[
ν −µ−1

µ−1 ν

]
·

[
2(XH +1)YH −2(µ+1)ν

Y 2
H − (XH −1)2−ν2 +(µ−1)2

] .
Ξ / (1−Ξ) .

Now, replace Ξ with ξ2, and
.
Ξ with 2ξ

.
ξ. We find

that (
.
µ

.
ν

.
ξ)T is proportional to the following: ν −µ−1 0

µ−1 ν 0
0 0 1

 ·
 (2(XH +1)YH −2(µ+1)ν) ξ

(Y 2
H − (XH −1)2−ν2 +(µ−1)2) ξ

(µ2 +ν2−1)(1−ξ2)


Multiplying this out gives the stated vector field.

Assume henceforth that |z| ≥ 2. By Lemma 17,
satisfying µ2 +ν2 = 1 is equivalent to satisfying x2 +

y2 = 1, i.e. being on the danger cylinder. At a point on
the danger cylinder, ξ = 0, and by Lemma 16, µ = x
and ν = y. Thus the vector field vanishes on the cylin-
der. Yet, by Corollary 2, points on the cylinder that
have the same values of x and y also have the same



values of L and R , and therefore are on the same spe-
cial curve. These curves are not integral curves for
the vector field.

Finally, off of the danger cylinder, the vector
field is non-vanishing. In fact, the third component
is not zero, because µ2 + ν2 6= 1 and ξ2 6= 1, since
ξ = 1 means that z = 0, and ξ = −1 means that
x2 + y2 + z2 = 1, which are not true here.

Attention will now be turned to using the curves
to prove Theorem 3. This is the final objective of this
paper.

Lemma 25. Regarding the special curves in (x,y,z)-
space, a tangent line for such a curve at a point with
coordinates (x,y,z) (with z 6= 0) will be parallel to the
xy-plane when and only when

1−X2
H −Y 2

H +2(Y 2
H −X2

H +3XH)x
+(3X2

H +3Y 2
H +4XH −7)x2−2(1+5XH)x3 + 8x4

+2(3+2XH)YHy−8YHxy−10YHx2y
+(3X2

H +3Y 2
H −4XH −7)y2 +2(3−5XH)xy2

+16x2y2−10YH y3 +8y4−4z2−8XH xz2 +12x2z2

−8YH yz2 +12y2z2 +4z4 = 0.

This condition does not hold when |z| ≥ 3, and so the
tangent lines cannot be parallel to the xy-plane when
|z| ≥ 3.

Proof. Define Z = z2, and let us refer to the long poly-
nomial in the lemma as p(x,y,Z). Using Lemma 16,
first express Z as a rational function of µ, ν and ξ.
Then compute the partial derivatives of Z with re-
spect to these, and combine them to form a gradi-
ent vector for Z, as a function of µ, ν and ξ. From
Lemma 24, we have a vector that is proportional
to (

.
µ

.
ν

.
ξ). The dot product of these two vec-

tors, when expressed in terms of x, y and Z equals
2Z(x2+y2+Z−1)p(x,y,Z)/(x2+y2+2Z−1). This
vanishes when

.
Z does.

Since we are assuming that Z 6= 0, this expression
vanishing only if either p(x,y,Z) = 0 or x2+y2+Z−
1 = 0. However, it can be checked that x2+y2+Z−1
is also a factor of

.
x and

.
y, and by factoring it out, we

can deduce that a tangent vector to the curve, at such
a point, is not parallel to the xy-plane. In contrast, the
p(x,y,Z) is not a factor of

.
x nor

.
y, and so its vanishing

does imply that a tangent vector, at such a point, is

parallel to the xy-plane. This is the only way in which
this can occur. Thus the first part of the lemma is
established.

Now, ∂p/∂Z = 8Z+4(3x2+3y2−2XH x−2YH y−
1) = 8Z+12[ (x−XH/3)2+(y−YH/3)2−(3+X2

H +

Y 2
H)/9 ]. Recall that X2

H +Y 2
H < 9 (Lemma 3). So

∂p/∂Z > 8(Z−2). Henceforth, Z is assumed to be at
least 2, ensuring that ∂p/∂Z is positive, and hence p
is increasing as a function of Z.

We next decompose p(x,y,Z) as follows.
p(x,y,Z) = q(x,y) + r(x,y,Z), where q(x,y) =

8[(x − (1 + 5XH)/16)2 + (y − 5YH/16)2]2 +

(1 + 5XH)/16)(y − 5YH/16)2 and r(x,y,Z) =

4Z2 +4(3x2 +3y2−2XHx−2YHy−1)Z + s(x,y), for
a certain quadratic polynomial s(x,y).

We see that q(x,y) has the form 8[(u2 + v2)2 +

uv2], using u = x−(1+5XH)/16 and v = y−5YH/16.
It is interesting that this has a minimum value of
-1/54. The unique local extreme is found by comput-
ing the two partial derivatives with respect to u and
v, and then computing the resultant of these polyno-
mials with respect to v, which equals a constant times
u5(1+6u)2. Continuing with this, it is discovered that
the minimum value of -1/54 occurs when u = −1/6
and v = 1/

√
18.

Henceforth, we will limit attention to the situation
for z = 3, so Z = 9, since this is all that is required.
In order to guarantee that p(x,y,9) is always positive,
it will be argued that r(x,y,9) > 1/54 for all x and
y. This will then ensure that p(x,y,Z) > 0 for all x,
y and Z with Z ≥ 9. Applying calculus again, it is
discovered that the quadratic polynomial r(x,y,9) has
one local extremum, where it takes on a global mini-
mum value. This minimum value can be expressed as
a rational function of XH and YH . Switching to polar
coordinates by setting (XH ,YH) = (ρcosω,ρsinω),
and with χ = cosω, it is seen that the minimum value
of r(x,y,9) equals N/D with N = 6197841846567−
270144022668ρ2 + 585260050ρ4 + 55321476ρ6 −
330625ρ8 + 807334704ρχ + 6949989152ρ3χ +

439735024ρ5χ − 7176000ρ7χ − 1186409352ρ2χ2 +

50495184ρ4χ2 − 37399400ρ6χ2 − 9310310016ρ3χ3 −
589707072ρ5χ3 + 9568000ρ7χ3 − 3292080ρ4χ4 +

99026400ρ6χ4 + 4840000ρ5χ5 − 66017600ρ6χ6, and
D = 21445828608 − 60440576ρ2 − 5087232ρ4 +

2785280ρχ − 41779200ρ3χ − 4096000ρ2χ2 +

55705600ρ3χ3. Since −1 ≤ χ ≤ 1 and 0 ≤ ρ < 3,
it becomes a simple matter to bound D between
17,812,488,192 and 24,086,274,048. Likewise,



N is bounded below by 2,948,641,317,306.
So N/D ≥ 122.42, and this establishes that
r(x,y,9) ≥ 122.42, for all x and y, which is far
bigger than required.

The algebraic manipulations involved in the proof
of the lemma are cumbersome without symbolic ma-
nipulation software. However, using such software, it
is straightforward to alter the argument to prove that
the lower bound can be reduced from 3 down to a
number just slightly bigger than 2. Moreover, graph-
ical evidence suggests that the lemma is still true for
a bound of 2, but no lower number. We are now pre-
pared to prove Theorem 3.

Proof of Theorem 3. Consider the region of (x,y,z)-
space for which 3≤ z<∞. By Lemma 25, the tangent
lines of the special curves are never parallel to the xy-
plane. The claim now is that when restricting to this
region, each connected component of each special
curve in the region contains a unique point for each
value of z with 3≤ z < ∞. Because of the smoothness
of these curves and the fact just mentioned about the
tangent lines, none of these connected components
can contain two points with the same z coordinate.

In addition, each of these connected components
must include a point for each value of z with 3≤ z <
∞, because the vector field in Lemma 24 never van-
ishes in this region. This means that for each point
(x,y,z) in this region, following the connected com-
ponents of the curve on which it lies, out towards
z = ∞, leads to a unique limit point (x0,y0,∞). Con-
versely, each point at infinity (x0,y0,∞) is the limit
for a particular connected component of one of the
special curves.

Consider now, for each value of t with 0 < t ≤
1/3, the following homeomorphism δt of the Cartesian
plane. For a general point (x0,y0) in the plane, and
for a value of t, start at the point at infinity (x0,y0,∞).
Consider the connected component of a special curve
that has this as its limit point. Let (xt ,yt ,1/t) be the
unique point on this for which z = 1/t.

Now define δt((x0,y0)) = (xt ,yt). Extend the def-
inition of δ by defining δ0 to be the identity function.
For each t ∈ [0, 1/3], δt is a homeomorphism, that is, a
continuous invertible mapping whose inverse is also
continuous. The mapping from the closed interval
[0, 1/3] that maps t to the mapping δt is then a con-
tinuous deformation of the plane. Moreover, for each

t ∈ [0, 1/3], δt takes the union of the unit circle and
the standard deltoid to the intersection of the z = 1/t
plane and the surface D = 0. But since D = 0 if and
only if D̂ = 0, this is a z-cross section of the surface
upon which the discriminant vanishes.

δt maps points on the unit circle to corresponding
points on the danger cylinder, with only the z coor-
dinate changing as t varies. In particular, the three
symmetrically arranged points (symmetric under 120-
degree rotations) where the standard deltoid intersects
the unit circle are mapped to three similarly arranged
points on the danger cylinder.

So the claims made in Theorem 3 are true for the
region 3 ≤ z < ∞. By symmetry, the claims are also
true for the region −∞ < z≤−3.

The curves considered in this section are well be-
haved and easy to visualize far from the control points
plane. Looking briefly at the other extreme, graphical
evidence, along with some calculus reasoning, sug-
gests that these curves loop around quite a bit near
the control points plane, and can only intersect the
control points plane in restricted ways. Seemingly,
they can pass through a control point from any di-
rection, and are allowed to intersect other points on
the circumcircle but only along trajectories tangent to
the danger cylinder. In addition, it appears that each
curve must pass through the orthocenter of the control
points triangle, and in doing so, must be parallel to the
z-axis. The curves are distinguished by their curvature
at the orthocenter. These appear to be the only ways
in which these curves can intersect this plane. These
claims are somewhat exhibited in Figure 4.

8 CONCLUSION

This work was largely concerned with producing a
manageable formula for the discriminant of Grunert’s
system of equations, and trying to understand the sur-
face where this quantity vanishes. This was largely
successful, and along the way, a useful vector space
of functions, a useful algebra of functions, and some
useful surfaces and curves were developed and em-
ployed. However, exploring the Perspective 3-point
Pose Problem to expose its hidden secrets remains
challenging. At the moment, it is necessary to com-
bine various aspects of geometry with substantial al-
gebraic manipulations.



Mathematical “tricks” like special Cartesian coor-
dinate systems, birational transformations and groups
of symmetries have proven quite helpful, but, so far at
least, have by no means succeeded in truly taming this
subject. Yet they have managed to reveal a number of
treasures, leaving one with a sense that one is more
or less on the right path. There is certainly reason to
believe that an even better combination of geometric
and algebraic reasoning could lead to a breakthrough,
opening doors and revealing interesting and useful as-
pects of P3P, while reducing the need to handle un-
wieldy algebraic formulas.

APPENDIX

1. r2
1r2

2r2
3 =

1 − 2XH x + (2XH +X2
H +Y 2

H ) x2

+ 2(Y 2
H −X2

H −1) x3 + (2XH +X2
H +Y 2

H ) x4 − 2XH x5

+ x6 − 2YH y − 4YH xy

+ 4XHYH x2y − 4YH x3y − 2YH x4y

+ (Y 2
H +X2

H −2XH ) y2 + 2(Y 2
H −X2

H +3) xy2 + 2(X2
H +Y 2

H ) x2y2

− 4XH x3y2 + 3 x4y2 + 4XHYH y3

− 4YH xy3 − 4YH x2y3 + (Y 2
H +X2

H −2XH ) y4

− 2XH xy4 + 3 x2y4 − 2YH y5

+ y6 + 3 z2 − 2XH xz2

+ 3 x2z2 − 2YH yz2 + 3 y2z2

+ z4.

2. (r2
2 + r2

3−d2
1)(r

3
2 + r2

1−d2
2)(r

2
1 + r2

2−d2
3) =

−1 + 4X2
H − 4X3

H + X4
H + 4Y 2

H + 12XHY 2
H + 2X2

HY 2
H + Y 4

H +

+ 2XH − X2
H + Y 2

H )(X
2
H + Y 2

H −5) x

+ (9 − 8XH − 18X2
H + 8X3

H + X4
H − 10Y 2

H − 8XHY 2
H + 2X2

HY 2
H + Y 4

H ) x2

+ 2(1 + 15XH − 5X2
H − 3X3

H + 3Y 2
H − 3XHY 2

H ) x3

+ 2(−9 + 2XH + 7X2
H + 3Y 2

H ) x4 − 16XH x5 + 8 x6

+ 2(1 + 2XH )(−5 + X2
H + Y 2

H ) YH y+8(2 − 2XH − X2
H − Y 2

H ) YH xy

+ 2(15 + 8XH − 3X2
H − 3Y 2

H )YH x2y + 8(−1 + 2XH )YH x3y − 16YH x4y

+ (9 + 8XH − 10X2
H + X4

H − 18Y 2
H − 16XHY 2

H + 2X2
HY 2

H + Y 4
H )y

2

+ 2(−3 + 15XH − X2
H − 3X3

H + 7Y 2
H − 3XHY 2

H ) xy2

+ 4(−9 + 5X2
H + 5Y 2

H ) x2y2 − 32XH x3y2 + 24 x4y2

+ 2YH (15 + 8X2
H −3X2

H − 3Y 2
H )y

3 + 8(−1+2XH )YH xy3 − 32YH x2y3

+ 2(−9−2XH +3X2
H +7Y 2

H ) y4 − 16XH xy4 + 24x2y4 − 16YH y5 + 8 y6

+ 2(3−5X2
H +2X3

H −5Y 2
H −6XHY 2

H ) z2

+ 4(7XH −2X2
H −X3

H +2Y 2
H −XHY 2

H ) xz2

+ 2(−15+2XH +9X2
H +5Y 2

H ) x2z2 − 32XH x3z2 + 24 x4z2

+ 4YH (7+4XH −X2
H −Y 2

H ) yz2 + 8(−1+2XH )YH xyz2−32YH x2yz2

+ 2(−15−2XH +5X2
H +9Y 2

H ) y2z2 − 32XH xy2z2 + 48x2y2z2 − 32YH y3z2

+ 24 y4z2 + 4(−3+X2
H +Y 2

H )) z4 − 16XH xz4 +24 x2z4 − 16YH yz4

+ 24 y2z4 + 8 z6.

3. The invariant part of 3(r2
2 + r2

3−d2
1)

2 equals

3 + 4X2
H − 4X2

H + X4
H + 4Y 2

H +12XHY 2
H +2X2

HY 2
H +Y 4

H

−4(XH − 2X2
H + X3

H + 2Y 2
H + XHY 2

H ) x

+ 2(−3−2XH +5X2
H +Y 2

H ) x2 − 16XH x3 + 12 x4

− 4YH (1+4XH +X2
H +Y 2

H ) y + 8(1+2XH )YH xy − 16YH x2y

+ 2(−3+2X2 +X2
H +5Y 2

H ) y2 − 16XH xy2 + 24 x2y2 − 16YH y3 + 12y4

+ 4(−3+X2
H +Y 2

H ) z2 − 16XH xz2 + 24 x2z2 − 16YH yz2 + 24 y2z2 + 12 z4,

and the annihilated part equals

2(1+XH )(2XH −X2
H −Y 2

H )X1 +2YH (2−2XH −X2
H −Y 2

H )Y1

+ 4(1+2XH )[(XH −1)X1 +YHY1] x

+ 2[(1−7XH )X1−5YHY1] x2 + 8X1 x3

+ 4[(1+2XH )YH X1 +(−1+XH +2Y 2
H )] y − 4[YH X1 +(1+XH )Y1] xy

+ 8Y1 x2y − 2[(1+5XH )X1 +7YH ] y2 + 8X1 xy2 +8Y1 y3

− 8(XH X1 +YHY1) z2 + 8XH xz2 + 8YH yz2.

4. The invariant part of 3r2
1(r

2
2 + r2

3−d2
1)

2 equals

3 + 4X2
H − 4X3

H + X4
H + 4Y 2

H + 12XHY 2
H + 2X2

HY 2
H +Y 4

H

+ 2(−9XH +5X2
H +X3

H −X4
H −5Y 2

H +XHY 2
H +Y 4

H ) x

+ (9−14X2
H +8X3

H +X4
H −6Y 2

H −8XHY 2
H +2X2

HY 2
H +Y 4

H ) x2

+ 2(−3+15XH −9X2
H −3X3

H +7Y 2
H −3XHY 2

H ) x3

+ 2(−9+6XH +9X2
H +5Y 2

H ) x4 − 24XH x5 +12 x6

+ 2YH (−9−10XH +X2
H +2X3

H +Y 2
H +2XHY 2

H ) y − 8YH (2XH +X2
H +Y 2

H ) xy

+ 2YH (15+16XH −3X2
H −3Y 2

H ) x2y + 8(−3+2XH )YH x3y − 24YH x4y

+ (9−6X2
H +X4

H −14Y 2
H −16XHY 2

H +2X2
2 Y 2

H +Y 4
H ) y2

+ 2(9+15XH−5X2
H−3X3

H +11Y 2
H−3XHY 2

H ) xy2 + 4(−9+7x2
H +7y2

H ) x2y2

− 48XH x3y2 + 36 x4y2 + 2YH (15+16XH −3X2
H −3Y 2

H ) y3

+ 8YH (−3+2XH ) xy3 − 48YH x2y3 + 2(−9−6XH +5X2
H +9Y 2

H ) y4

− 24XH xy4 +36 x2y4 − 24YH y5 + 12 y6

+ (−9+8X2
H −4X3

H +X4
H +8Y 2

H +12XHY 2
H +2X2

HY 2
H +Y 4

H ) z2

+ 4(3XH −2X2
H −X3

H +2Y 2
H −XHY 2

H ) xz2

+ 2(−9+6XH +11X2
H +7Y 2

H ) x2z2 − 48XH x3z2 + 48 x4z2

+ 4YH (3+4XH −X2
H −Y 2

H ) yz2 + 8(−3+2XH )YH xyz2 − 48YH x2yz2

+ 2(−9−6XH +7X2
H +11Y 2

H ) y2z2 − 48XH xy2z2 + 72 x2y2z2

− 48YH y3z2 + 36y4z2 + 4(X2
H +Y 2

H ) z4 − 24XH xz4 + 36 x2z4

− 24YH yz4 + 36 y2z4 + 12z6,

and the annihilated part equals

2[(1+XH )(2XH −X2
H −Y 2

H )X1 +YH (2−2XH −X2
H −Y 2

H )Y1] +

2[(−3−4XH +X2
H +2X3

H −Y 2
H −2XHY 2

H )X1 +2YH (2+XH +X2
H −Y 2

H )Y1] x

+ 2[(3−XH −5X2
H −X3

H +Y 2
H −XHY 2

H )X1−YH (3+2XH +X2
H +Y 2

H )Y1] x2

+ 2[(3+6XH +3X2
H +Y 2

H )X1+2YH (XH−1)Y1] x3 − 2[(1+XH )X1+YHY1] x4

+ 2[2YH (2+XH −2YH )X1 +(−3+4XH −X2
H +Y 2

H −4XHY 2
H )Y1] y

+ 4[YH (1+4XH )X1 +(−3+XH +4Y 2
H )Y1] xy

+ 2[2YH (XH −2)X1 +(3−4XH +X2
H +3Y 2

H )Y1] x2y

+ 4[−YH X1 +(XH −3)Y1] x3y + 2[(−3−3XH +3X2
H −X3

H+

Y 2
H −XHY 2

H )X1 +YH (−1+6XH −X2
H −Y 2

H )Y1] y2

+ 2[(3−2XH +3X2
H +Y 2

H )X1 +2YH (XH −5)Y1] xy2



− 8(XH X1 +YHY1)x2y2 + 2[(2YH (XH −2)X1 +(3−4XH +X2
H +3Y 2

H )Y1] y3

− 4[YH X1 +(XH −3)Y1] xy3 − 2[(XH −3)X1 +YHY1] y4

− 2[(2XH −X2
H +X3

H +Y 2
H +XHY 2

H )X1 +YH (2+2XH +X2
H +Y 2

H )Y1] z2

+ 4[(3+XH +2X2
H )X1 +YH (2XH −1)Y1] xz2−2[(3+7XH )X1 +5YHY1] x2z2

+ 4[(YH (2X1−1)X1 +(3−X1 +2Y 2
1 )Y1] yz2−4[YH X1 +(XH −3)Y1] xyz2

− 2[(5XH −3)X1 +7YHY1]y2z2 − 8(XH X1 +YHY1) z4.

5. p(x,y,z2), for the example in Section 5, equals

332929 + 1477120x + 6214010x2 − 928000x3 − 9220593x4 − 67338240x5 +

106069740x6 + 61248000x7 − 193147761x8 + 75845120x9 + 71901050x10 −
70304000x11 + 17850625x12 − 3711264y − 22634880xy − 57340896x2y −
22571520x3y + 277965504x4y + 59508480x5y − 395427264x6y + 39237120x7y +

204877920x8y − 53539200x9y − 26364000x10y + 15518346y2 + 119679760xy2 +

251319262x2y2 +369600x3y2−866750684x4y2−162561440x5y2 +750830076x6y2 +

108422080x7y2−258020750x8y2−65910000x9y2 +107103750x10y2−28736736y3−
252952320xy3 − 555837312x2y3 + 368866560x3y3 + 951442368x4y3 +

309154560x5y3 − 235048320x6y3 − 425068800x7y3 − 131820000x8y3 +

18531855y4 + 102859840xy4 + 137177412x2y4 − 579170880x3y4 − 240375206x4y4 −
94652480x5y4 − 46221500x6y4 + 439400000x7y4 + 267759375x8y4 + 9845184y5 +

309358080xy5 + 1401870528x2y5 + 500597760x3y5 − 1090764480x4y5 −
953971200x5y5−263640000x6y5−32442164y6−355361440xy6−1220951684x2y6−
211190720x3y6 + 986030500x4y6 + 1010620000x5y6 + 357012500x6y6 +

55000896y7 + 230680320xy7 − 656872320x2y7 − 846892800x3y7 − 263640000x4y7 −
36598641y8 − 83961280xy8 + 719137250x2y8 + 790920000x3y8 + 267759375x4y8 −
6034080y9 − 264451200xy9 − 131820000x2y9 + 16807050y10 + 215306000xy10 +

107103750x2y10 − 26364000y11 + 17850625y12 + 898040z2 + 58905080xz2 +

30603300x2z2 − 257069280x3z2 + 227997120x4z2 + 256336080x5z2 −
752623560x6z2 + 295545120x7z2 + 421722600x8z2 − 353717000x9z2 +

71402500x10z2 − 19269120yz2 − 330058560xyz2 − 260713440x2yz2 +

675230400x3yz2 + 368353440x4yz2 − 185365440x5yz2 − 9278880x6yz2 −
159806400x7yz2 − 79092000x8yz2 + 121825340y2z2 + 390365040xy2z2 +

13742040x2y2z2 − 692867760x3y2z2 − 700349520x4y2z2 + 16690960x5y2z2 +

480399400x6y2z2 + 13182000x7y2z2 + 357012500x8y2z2 − 275015520y3z2 +

483787200xy3z2 + 2332848960x2y3z2 + 664360320x3y3z2 − 1609676640x4y3z2 −
1323067200x5y3z2 − 316368000x6y3z2 + 10176920y4z2 − 1001931840xy4z2 −
2759428360x2y4z2 − 800525440x3y4z2 + 2303030600x4y4z2 + 2161848000x5y4z2 +

714025000x6y4z2 + 699023520y5z2 + 849725760xy5z2 − 1926044640x2y5z2 −
2166715200x3y5z2 − 474552000x4y5z2 − 526822400y6z2 − 521671280xy6z2 +

2566873400x2y6z2 + 2869282000x3y6z2 + 714025000x4y6z2 − 325646880y7z2 −
1003454400xy7z2 − 316368000x2y7z2 + 322519600y8z2 + 1074333000xy8z2 +

357012500x2y8z2 − 79092000y9z2 + 71402500y10z2 + 43880850z4 − 19266000xz4 +

215627100x2z4 + 190936200x3z4 − 1335133800x4z4 + 448188000x5z4 +

949053300x6z4 − 639327000x7z4 + 107103750x8z4 − 234842400yz4 +

322857600xyz4 + 1029818400x2yz4 − 4867200x3yz4 − 556888800x4yz4 −
158995200x5yz4 − 79092000x6yz4 + 124705100y2z4 − 821914600xy2z4 −
2606385600x2y2z4 − 635440000x3y2z4 + 2286755900x4y2z4 + 652509000x5y2z4 +

428415000x6y2z4 + 1029818400y3z4 + 835536000xy3z4 − 1641057600x2y3z4 −
1372550400x3y3z4 − 237276000x4y3z4 − 1274969800y4z4 − 1066052000xy4z4 +

3396071900x2y4z4 + 3222999000x3y4z4 + 642622500x4y4z4 − 662344800y5z4 −
1213555200xy5z4 − 237276000x2y5z4 + 915929300y6z4 + 1931163000xy6z4 +

428415000x2y6z4 − 79092000y7z4 + 107103750y8z4 − 19773000xz6 −
1281949500x2z6 + 228488000x3z6 + 920543000x4z6 − 498719000x5z6 +

71402500x6z6 + 474552000yz6 + 158184000xyz6 − 342732000x2yz6 −
52728000x3yz6 − 26364000x4yz6 − 1288540500y2z6 − 628342000xy2z6 +

1869647000x2y2z6 + 1001832000x3y2z6 + 214207500x4y2z6 − 342732000y3z6 −
474552000xy3z6 − 52728000x2y3z6 + 931528000y4z6 + 1500551000xy4z6 +

214207500x2y4z6−26364000y5z6 +71402500y6z6−481966875z8 +321311250x2z8−
142805000x3z8 + 17850625x4z8 + 321311250y2z8 + 428415000xy2z8 +

35701250x2y2z8 +17850625y4z8 .
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