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Abstract. From a fixed acute triangular base ∆ABC, all possible tetra-
hedra in three-dimensional real space are considered. The possible angles
at the additional vertex P are shown to be bounded by certain inequali-
ties, mostly linear inequalities. Together, these inequalities provide fairly
tight bounds on the possible angle combinations at P .

Four sets of inequalities are used for this purpose, though the
inequalities in the first set are rather trivial. The inequalities in the
second set can be established quickly, but do not seem to be known.
The third and fourth set of inequalities are proved by studying scalar
and vector fields on toroids. The first three sets of inequalities are linear
in the angles at P , but the last set involves cosines of these angles. A
generalization of the last two sets of inequalities is also proved, using
the Poincaré-Hopf Theorem.

Extensive testing of these results has been done using Mathemat-
ica and C++. The C++ code for this is listed in an appendix. While it
has been demonstrated that the inequalities bound the possible combi-
nations of angles at P , the results also reveal that additional inequali-
ties, in particular linear inequalities, exist that would provided tighter
bounds.
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1. Introduction and the Main Result

Using a fixed acute triangle 4ABC in three-dimensional real space, consider
any point P that is not coplanar with A, B and C. Together, A, B, C and
P form the vertices of a tetrahedron. Following standard practice, =A, =B
and =C will be used to denote the interior angles of 4ABC. The angles
=BPC, =CPA and =APB will be denoted α, β and γ, respectively. We will
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be interested in the limitations that the angles =A, =B and =C place on the
angles α, β and γ. This turns out to be more complicated than one might
initially imagine. All angles will be measured in radians. The side lengths of
4ABC opposite A, B and C will be denoted a, b and c, respectively.

Theorem 1.1. Using the above setup, the following constraints on the possible
values of pα, β, γq hold:

1. α   β � γ, β   γ � α, γ   α� β, α� β � γ   2π,
2. =A� β � γ   2π, α�=B � γ   2π, α� β �=C   2π,
3. α ¤ =A Ñ β ¤ maxt=B,=C�αu, and suitable permutations of this,
4. α ¤ =A Ñ cos=C cosβ�cos=B cos γ ¡ 0, and suitable permutations

of this.

“Suitable permutations” means permuting the symbols “A”, “B” and “C”,
and permuting the symbols “α”, “β” and “γ”, together, in the same way.
The right arrows are logical implications. Of course, an implication pÑ q is
logically equivalent to the disjunction  p _ q. (“^”, “_” and “ ” are used
here for the basic logical operations of conjunction, disjunction and negation.)

While tetrahedra have been studied in some depth, over many years,
the last three sets of constraints in the theorem do not seem to be known, al-
though the constraints in the first set are trivial. For instance, [1] has two sub-
stantial chapters devoted to tetrahedra, including various interesting results
that generalize classical results on triangles, but does not mention anything
like the above constraints on the interior angles of the tetrahedron’s faces.
These constraints could potentially be of wide practical use in areas such as
molecular geometry, tetrahedral finite-element meshes, and camera-tracking,
particularly the so-called “perspective 3-point problem” (see [3]).

A Cartesian coordinate system (x, y, z) will be fixed for three-dimensional
real space. For simplicity, and without loss of generality, we will henceforth
assume that A, B and C are located on the xy-plane, and usually that P lies
above this (i.e. z ¡ 0 for P ). However, as part of the analysis, sometimes it
will be useful to relax this restriction, and allow P to be on or below the xy-
plane. The first two sets of constraints in the theorem are easily established
by means of a “spherical model,” as follows.

Proof of Parts 1 and 2 of Theorem 1.1. Assume that P is above the xy-plane.
Consider a sufficiently small sphere centered at P , and contained in the up-

per half-space (z ¡ 0). The rays
ÝÑ
PA,

ÝÑ
PB and

ÝÑ
PC intersect the sphere at

points A1, B1 and C 1 respectively. After rescaling space (for the purpose of
this proof only), so that the sphere now has radius one, the great-circle dis-
tance between B1 and C 1 is α, and similarly for the other two such pairs of
points. Thus, A1, B1 and C 1 are the vertices of a spherical triangle whose side
lengths are α, β and γ. The first set of constraints (Part 1) in the theorem are
simply the well-known constraints for the side lengths of a spherical triangle
on a unit sphere.
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Next, consider the great circle that is the intersection the sphere and a
plane parallel to the xy-plane. The points on this great circle have the same

value of z as P . The sideline
ÐÑ
BC of 4ABC is parallel to a line through P

that cuts this great circle in two antipodal points D and D1. Choose these

so that the rays
ÝÑ
PD and

ÝÑ
BC point in the same direction. Similarly obtain

antipodal points E and E1, and antipodal points F and F 1, with
ÝÑ
PE and

ÝÑ
CA

pointing in the same direction, and with
ÝÑ
PF and

ÝÑ
AB pointing in the same

direction.
The plane containing P , B and C also contains B1, C 1, D and D1, and

we see that these latter four points lie on a common great circle. Likewise for
the points C 1, A1, E and E1, and for the points A1, B1, F and F 1. Of course
the points D, D1, E, E1, F and F 1 all lie on the great circle that is parallel to
the xy-plane. It is then straightforward to check that great-circle distances
between D and E1, between E1 and F , between F and D1, between D1 and
E, between E and F 1, and between F 1 and D are respectively, =C, =A, =B,
=C, =A and =B.

The points A1, B1 and C 1 are all located in the lower hemisphere, that
is, they have z coordinates that are less that the z coordinate of P . Now,
the points A1, E1 and F form a spherical triangle, and the arc from A1 to E1

extends the arc from A1 to B1, while the arc from A1 to F extends the arc
from A1 to C 1. Since the distance from A1 to B1 is γ, and the distance from
A1 to C 1 is β, it follows that =A � β � γ   2π. Similarly for the other two
constraints in Part 2 of the theorem.

�

In order to prove the other two parts of the theorem, it will be helpful
to study certain functions (scalar fields) on certain toroids, and their surface
gradient vector fields. This forms the content of Sections 2, 3 and 4 of this
article. In Section 5, the proof of the remaining parts of Theorem 1.1 will
be presented. By a toroid, we here mean the surface generated in three-
dimesional real space by rotating a circular arc about its endpoints. We will
only be interested in toroids whose endpoints are two of the three triangle
vertices A, B and C. In fact, we will primarily focus on an arbitrary toroid
T generated by an arc whose endpoints are B and C, and can then argue by
symmetry that certain claims about it can be adapted to toroids generated
by arcs whose endpoints are A and B, or A and C. We will call B and C the
apexes of the toroid T .

Lemma 1.2. Given a toroid T with apexes B and C, all of the points on T
other than B and C have the same value for the angle α � =BPC. Moreover,
no other point in space has this value for α.

Proof. By the Inscribed Angle Theorem, all of the points on the arc used
to generate T (with endpoints B and C) have the same value for α. When

a point on this arc is rotated about the line
ÐÑ
BC, its value of α is clearly

unchanged. Thus, the points on T have the same value for the angle α. Any
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Figure 1. Example of Torα with contours for a scalar field Q

other point in space, not on
ÐÑ
BC, can be rotated about

ÐÑ
BC to a point in the

xy-plane that is on the same side of
ÐÑ
BC as the arc used to generate T , and

in this half-plane, it will either be inside or outside the arc. If it is inside the
arc, then its value of α will be greater than that of the points on the arc. If
instead it is outside the arc, then its value of α will be less than that of the
points on the arc.

�

Now, given a value for α with 0   α   π, we will hencefoth let Torα
denote the toroid consisting of points that have the specified value of α,
together with the apexes B and C. We will also fix non-negative numbers µ
and ν, not both zero, and will let

Q � µ cosβ � ν cos γ.

We will be interested in studying Q as a scalar field on Torα (varying P ).
Contours for this can be seen in Figure 1. We will also examine the surface

gradient vector field
Ñ

5αQ, defined as follows:

Ñ

5αQ �
Ñ

5Q�
Ñ

5Q �
Ñ

5 cosα
Ñ

5 cosα �
Ñ

5 cosα

Ñ

5 cosα � �
Ñ

5 cosα� p
Ñ

5 cosα�
Ñ

5Qq
Ñ

5 cosα �
Ñ

5 cosα
,

(1.1)

where the other gradients involved in this are gradients in three-dimensional

space. Of course,
Ñ

5αQ at a point on Torα will be tangent to this surface.

Similarly define the surface gradient
Ñ

5α s for any scalar field s in three-

dimensional space. Note that in the formula for
Ñ

5αQ, we could substitute
Ñ

5α in place of
Ñ

5 cosα. However, in the analysis presented in the next few
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sections, it is more convenient to work with
Ñ

5 cosα,
Ñ

5 cosβ and
Ñ

5 cos γ,

rather than
Ñ

5α,
Ñ

5β and
Ñ

5γ.

We will now begin a careful analysis of the vector field
Ñ

5αQ on Torα,
and its implication for the scalar field Q. However, this will be limited to the
case where α   =A, and where the triangle 4ABC is acute. In Section 2, the
apexes B and C of Torα are investigated. Since these are the two points where
Torα is not smooth, some extra care needs to be taken. Upon replacing tiny
cone-like neighborhoods of these points with tiny smooth surfaces that avoid

B and C, it will be discovered that the winding number of
Ñ

5αQ around the
circular boundary of either of these tiny surfaces is always 0, 1 or 2. In this

way, each of B and C can be regarded as a singularity for
Ñ

5αQ on Torα of
index 0, 1 or 2. (Winding numbers and indexes of singularities are discussed
in [2].)

In Section 3, it will be shown that apart from B and C, there is al-

ways one or two (literally) other singularities for
Ñ

5αQ on Torα, lying in
the xy-plane, and that these are necessarily local maximum points for Q.
In Section 4, additional singularities, not in the xy-plane, are considered. It
is shown that there is at most one such singularity in the upper half of the
toroid (z ¡ 0), and a corresponding singularity in the lower half (z   0).
Using the Poincaré-Hopf Theorem (see [2]), it is established that these can-
not be points where Q takes on a local extreme value. Thus, Q cannot have
an extreme value at a point on Torα that is not on the xy-plane. In Section
5, this fact is exploited to establish the third and fourth parts of Theorem 1.1.

2. Toroid Apexes as Singularities

In order to make headway in proving the remaining constraints in Theorem 1,
it will be helpful to employ some vector analysis. The quantities cosα, cosβ
and cos γ will be considered as functions of the variable point P � px, y, zq
in three-dimensional real space, and as such, regarded as scalar fields. Their

gradients,
Ñ

5 cosα,
Ñ

5 cosβ and
Ñ

5 cos γ, are particularly important vector

fields here. Let
Ñ
s1,

Ñ
s2 and

Ñ
s3 be the vector fields

ÝÑ
PA,

ÝÑ
PB and

ÝÑ
PC, respectively.

Let sj � |Ñsj | and ps1 � Ñ
sj{sj pj � 1, 2, 3q. A series of lemmas will now be

stated and proved.

Lemma 2.1.
Ñ

5sj � � psj , Ñ

5 � psj � �2{sj and
Ñ

5� psj � 0 pj � 1, 2, 3q. Also,ps2 � ps3 � cosα � ps22�s23�a2q { p2s2s3q, ps3 � ps1 � cosβ � ps23�s21�b2q { p2s3s1q
and ps3 � ps1 � cos γ � ps21 � s22 � c2q { p2s1s2q.
Proof. First consider the vector field

Ñ
s � �pxi�yj�zkq, the scalar field s �

|Ñs | �
a
x2 � y2 � z2, and the unit vector field ps � Ñ

s {s. Straightforward

computations show that
Ñ

5s � �ps, Ñ

5 � Ñs � �3,
Ñ

5 � ps � ps
Ñ

5 �Ñs � Ñ
s �
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Figure 2. A cone near the apex B

Ñ

5sq{s2 � �2{s,
Ñ

5 � Ñ
s � 0, and

Ñ

5 � ps � Ñ

5ps�1q � Ñ
s � s�1

Ñ

5 �Ñs �
s�2 ps�Ñ

s � 0. Now, the vector field
Ñ
sj pj � 1, 2, 3q is simply a translation of

the vector field
Ñ
s , and thus the first few formulas in the lemma immediately

follow. The remaining ones hold by a basic property of dot products.
�

Lemma 2.2.
Ñ

5 cosα � 1

s2s3

�
ps3 cosα� s2q ps2 � ps2 cosα� s3q ps3 �

� s23 � s22 � a2
2s22s3

ps2 � s22 � s23 � a2
2s2s23

ps3 ,
and similarly for

Ñ

5 cosβ and
Ñ

5 cos γ.

Proof. Using calculus and the Law of Cosines, we see that
Ñ

5 cosα �
Ñ

5 r ps22�
s23 � a2q{p2s2s3q s � r p�2s2 ps2 � 2s3 ps3qp2s2s3q � ps22 � s23 � a2qp�2s3 ps2 �
2s2 ps3q s { p4s22s23q �

�1

s2s3

�
s22 � s23 � a2

2s2
ps2 � s23 � s22 � a2

2s3
ps3 � �

�1

s2s3
r ps2 � s3 cosαq ps2 � ps3 � s2 cosαq ps3 s ,

from which, the claims in the lemma immediately follow.
�
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In the present section only, we will require a certain cone-based coor-
dinate system, centered at B, and associated basis vectors, as follows. Let’s
begin with cylindrical coordinates centered at B such that the axis of the

cylinders is
ÐÑ
BC. Given a point P in space, consider its orthogonal projection

P 1 onto
ÐÑ
BC, and let ρ � |PP 1|. Let δ be the signed distance from B to P 1,

signed so that C is in the negative direction. Consider the cylinder of radius

ρ with axis
ÐÑ
BC. This cylinder intersects the xy-plane in two lines. Consider

the one that is on the side of
ÐÑ
BC that is opposite to the side containing A,

and call this line `. Let ψ be the signed angle, between �π and π, that is

made when moving perpendicular to
ÐÑ
BC, along the cylinder, from a point

on ` to P .
The triple pδ, ρ, ψq are the desired cylindrical coordinates. To convert

these to the cone-based coordinates, set φ � arctanpρ { |δ|q, and use the triple
pδ, φ, ψq. Our attention will be restricted to points for which δ ¡ 0 and this
will tacitly be assumed. We are actually only interested in points P for which
δ is a small positive number. See Figure 2.

Next, define some vectors related to the cone-based coordinates, as fol-
lows:

�
s2 � ps2 � ÝÑ

BC

| ps2 � ÝÑ
BC|

, qs2 � �
s2 � ps2 .

ÝÑ
BC � Ñ

s3 � Ñ
s2 is the vector pointing from B to C, of length a. Of course,

the unit vector ps2 points from P towards B. Consider the cone containing

P that has apex B and axis
ÐÑ
BC, as in Figure 2. The unit vector

�
s2 points

along the circle on the cone that contains P and is orthogonal to
ÐÑ
BC, and

w.l.o.g., assume this is in the direction of increasing ψ. The unit vector qs2
points orthogonal to the tangent plane for the cone at P , pointing out of

the cone. Together, t ps2, qs2, �s2u constitute an orthonormal basis for the vector
space we get by using P as the origin. The next few lemmas are steps in the

goal of expressing
Ñ

5α cosβ and
Ñ

5α cos γ in terms of δ, φ, ψ, ps2, qs2 and
�
s2, for

small positive δ (so P near apex B).

Lemma 2.3.
Ñ
s1 � pδ secφ� c cos=B cosφ� c sin=B sinφ cosψq ps2

� c pcos=B sinφ� sin=B cosφ cosψq qs2
� c sin=B sinψ

�
s2 and

Ñ
s3 � pδ secφ� a cosφq ps2 � a sinφ qs2

Proof. We begin with the vector
Ñ
s3 since this is easier to handle. Consider

the right triangle having the segment BC as hypotenuse, and having one

of its legs along the line
ÐÑ
BP . This leg has length a cosφ, and the other leg
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Figure 3. Relationship between certain angles

has length a sinφ. ps2 is parallel to the former leg, and qs2 is parallel to the
latter leg. At P , the unit vector qs2 points out of the constant-pδ, φq cone

containing P . It follows that
ÝÑ
BC � Ñ

s3 � Ñ
s2 � a cosφ ps2 � a sinφ qs2. Observe

that s2 � δ secφ. Thus,
Ñ
s3 � Ñ

s2 �
ÝÑ
BC � δ secφ ps2 � a cosφ ps2 � a sinφ qs2 �

pδ secφ� a cosφq ps2 � a sinφ qs2.

Now we will focus on the vector
Ñ
s1. Let P 1 be the orthogonal projection

of P onto the line
ÐÑ
BC. Observe that

ÝÑ

PP 1 � ρ pn � δ tanφ pn, where pn �
sinφ ps2 � cosφ qs2, a unit vector which at P , points towards P 1. Also,

ÝÑ

P 1B �
δyBC � δ pcosφ ps2�sinφ qs2q. Next, we seek a suitable expression for

ÝÑ
BA. For

this purpose, notice that pm, defined as cosψ pn � sinψ
�
s2 � cosψ sinφ ps2 �

cosψ cosφ qs2� sinψ
�
s2, is a unit vector that is in the xy-plane, perpendicular

the vector
ÝÑ
BC, and points in the general direction of A (as opposed to away

from it). It can now be checked that
ÝÑ
BA � c pcos=ByBC � sin=B pmq �

c rcos=B pcosφ ps2�sinφ qs2q�sin=B pcosψ sinφ ps2�cosψ cosφ qs2�sinψ
�
s2qs.

So now,
Ñ
s1 �

ÝÑ
PA �

ÝÑ

PP 1 �
ÝÑ

P 1B �
ÝÑ
BA, and the claim made in the lemma

about this vector follows directly, with a little trigonometry.

�

The constant-φ cone containing P , near B, is intended to be an ap-
proximation to the portion of the toroid Torα containing P . Its value of α
is approximately equal to the angle φ associated with the cone. The next
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proposition provides the precise relationship between φ and α.

Proposition 2.4. A point P whose cone-based coordinates (with respect to B,
as defined above) are pδ, φ, ψq lies on the toroid Torα for the value of α that
satisfies

tanα � a cosφ sinφ

δ � a cos2 φ
and tanpφ� αq � δ tanφ

a� δ .
(2.1)

Proof. By rotating about
ÐÑ
BC as needed, we may assume that P is in the

xy-plane, and on the circular arc A that generates Torα. Let r denote the
radius of this circle, and let X denote its center. Let ι be half of the angle
=BXP . See Figure 3.

Since |BP | � δ secφ, we see that 2r sin ι � δ secφ. Notice that r �
|XP | � |XB| � pa{2q cscα. Now, ι � φ � α by the following reasoning. Let

D be an arbitrary point on
ÐÑ
BC but on the side of B that is opposite of the

side containing C. Consider also the tangent ray to A at B, and let E be
an arbitrary point along it. This arc is the longer of the two arcs on the
circle that connect B and C since α   =A. Let M be the midpoint of the
segment BC. Note that α � =BPC � =MXB � =DBE. But φ � =DBP
and ι � =EBP , and so φ � α� ι. This reasoning involves rotating a couple
angles by 90 degrees.

We now see that δ secφ = 2r sin ι = a cscα sinpφ�αq = a psinφ cotα�
cosφq. This can be rewritten as the left equation in (2.1). To show the rest,
use tanpφ� αq � ptanφ� tanαq { p1� tanφ tanαq, substitute and simplify.

�

The following is quickly proved by basic trigonometric reasoning, pos-
sibly using the Lemma 2.3.

Lemma 2.5.$''&
''%

s21 � pc cos=B � δq2 � pc sin=B � ρ cosψq2 � ρ2 sin2 ψ
� c2 � 2c δ pcos=B � sin=B tanφ cosψq � δ2 sec2 φ

s22 � δ2 � ρ2 � δ2 sec2 φ
s23 � pa� δq2 � ρ2 � a2 � 2aδ � δ2 sec2 φ

The following two facts about gradients are useful and straightforward
to check.

Lemma 2.6.
Ñ

5ψ � 1

ρ

�
s2 � cotφ

δ

�
s2 and

Ñ

5 φ � cosφ

δ
qs2 .

Now, consider
Ñ

5α cosβ and
Ñ

5α cos γ expressed in terms of the basis

t ps2, �s2, qs2u when δ is a small positive number, and so P is close to B. Sub-
stantial manipulations are required to establish the following two lemmas,
but this work is straightforward to do, and a sketch for how this might go is
provided below. Here R denotes the circumradius of the triangle 4ABC.
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Lemma 2.7. Write
Ñ

5α cosβ � κβ1 ps2�κβ2 qs2�κβ3 �
s2. The coefficients here

are such that as δ Ñ 0�,

$&
%

2Rκβ1 � � sin2
=B csc=C cosφ p1� cot=A tanφ cosψq � Opδq

2Rκβ2 � �δ csc=A tanφ κβ1 � Opδ2q
2Rκβ3 � cot=A sin2

=B csc=C sinψ � Opδq.

Lemma 2.8. Write
Ñ

5α cos γ � κγ1 ps2�κγ2 qs2�κγ3 �
s2. The coefficients here

are such that as δ Ñ 0�,

$''''&
''''%

2Rκγ1 � � csc=A sin=B cot=C � cos=B p cos=B csc=C
� csc=A q cos2 φ� csc=A sin=B csc=C sinp=A�=Bq
� cosφ sinφ cosψ � sin2

=B csc=C sin2 φ cos2 ψ � Opδq
2Rκγ2 � �δ csc=A tanφ κγ1 � Opδ2q
δ κγ3 � sin=B cosφ sinψ � Opδq.

Sketch of proof of Lemmas 2.7 and 2.8. Useful substitutions for deriving the
claimed formulas come from the previous lemmas and from equation (1.1)
with either cosβ or cos γ used in place of Q. Each of κβ1, κβ2, κβ3, κγ1, κγ2
and δ κγ3 can be expressed as a Taylor’s series in δ. To obtain the claimed
formulas, it is only necessary to compute the first nonzero term in each series.

�

We are now ready to state and prove the main claim about B and C

as singularities for the surface gradient
Ñ

5αQ on the surface Torα. This will
later be needed to prove the last part of Theorem 1.1

Lemma 2.9. Fix α with 0   α   =A, and consider the toroid Torα. Consider
a small circle on this toroid near the apex B. Specifically, using the cone-
based coordinates introduced earlier, the circle should consist of points having
the same values of δ and φ. If δ is a sufficiently small positive number, then

the vector field
Ñ

5αQ does not vanish on this circle, and its winding number
around this circle, on the surface Torα, is either 0, 1 or 2. Similarly for a
small circle near the apex C.

Proof. It is clear from Lemmas 2.7 and 2.8 that when δ is sufficiently small,

and sinψ is not comparitively small, the
�
s2 part of

Ñ

5αQ overwhelmingly

dominates, provided that ν ¡ 0. This means that the vector
Ñ

5αQ essentially
continues to point either forward or backward when moving around the cir-
cle, except when sinψ becomes small. The only time when sinψ becomes
sufficiently small so as to affect this behavior is near the xy-plane.

The vector only has a possibility of vanishing at the xy-plane. This
would require that µκβ1 � ν κγ1 � 0. If this happens, then simply start over
using a smaller value of δ. Since (2.1) indicates how α, δ and φ are related,
and since we are not changing α, we see that the change in δ will result in a
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different value for φ. It can be checked directly that µκβ1 � ν κγ1 � 0 with
ψ � 0 or ψ � π happens only when ν{µ � � sin=B { sinp=B 	 φq. (µ and
ν are constants here.) Thus, reducing δ to obtain a smaller circle will change
φ, and thereby eliminating the issue of a vanishing vector.

Now, when approaching the xy-plane, the vector will shrink to a smaller,
but nonzero, size, and when crossing the xy-plane, it will make a half rotation
before enlarging again and essentially pointing forward or backward again.
However, due to the symmetry about the xy-plane, the direction will switch.
If the vector was originally pointing forward before getting close to the xy-
plane, it will now be pointing backward, and vice-versa. Notice too when ψ

is a multiple of π, and so P is on the xy-plane, that while the
�
s2 component

of
Ñ

5αQ switches sign due to the sinψ factor, the rest of
Ñ

5αQ is nonzero.
It is approximately constant in ψ since ψ only occurs in cosψ in the part of
Ñ

5αQ that is orthogonal to
�
s2.

It follows that the winding number of
Ñ

5αQ on Torα along the constant-
pδ, φq circle is either 0, 1 or 2, depending on the directions of the half turns
at the two points where the circle intersects the xy-plane, provided that the
positive number δ is sufficiently small, and still assuming that ν ¡ 0. If
instead, ν � 0 and µ ¡ 0, then an evident adjustment is required.

Finally, by symmetry, this claim can also be made concerning small
circles near C.

�

3. Additional Singularities in the xy-plane

As we will see, there is always at least one more singularity of
Ñ

5αQ on Torα
that lies in the xy-plane, and never more than two. Furthermore, each such
singularity corresponds to a local maximum of the function Q on Torα. To
keep the formulas involved in this analysis as simple as possible, it will be
assumed in this section (only), without loss of generality, that there is a
positive number y0 such that the coordinates of the points B and C in the
xy-plane are p0, y0q and p0,�y0q.

We continue to assume that the triangle 4ABC is acute, and that
0   α   =A. The intersection of Torα and the xy-plane consists of an arc
A connecting B and C on a circle C whose center X has coordinates px0, 0q
such that x0 ¡ 0, together with the reflection of this arc about the y-axis.
Denote the reflections of A and C by A1 and C1, respectively. The radius of
C, and of C1 will be denoted by r0 �

a
x20 � y20 . Notice that since α   =A,

the arc A is the longer of the two arcs on C joining B and C.
The coordinates of A will just be denoted px1, y1q, which are only re-

stricted by above two requirements. The requirement that α   =A means
that A must be inside the union A Y A1. The requirement that 4ABC is
acute means that |y1|   y0   r1, where r1 �

a
x21 � y21 , as is straighforward

to check.
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Figure 4. The x1 ¡ 0 case of the xy-plane analysis

We will actually limit our focus in the section to singularities of
Ñ

5αQ on
the arc A, and basically ignore A1, even though singularities on the latter arc
are also significant. By symmetry, studing the singularities on A1 is equivalent
to negating x1, and then focusing on the original arc A. As we will discover,
the situation concerning the singularities on A is quite different depending
on whether x1 is positive or negative. See Figures 4 and 5.

The points on the arc A will be parameterized via an angle θ with
|θ|   θ0 with θ0 � π � α. Specifically, the coordinates of such a point P will
be px0 � r0 cos θ, r0 sin θq. Notice that px0 � r0 cos θ0,�r0 sin θ0q � p0,�y0q,
the coordinates of B and C. Torα is generated be rotating A about the y-axis.
Letting ψ denote (in this section) the angle of rotation about the y-axis, the
points on Torα, other than B and C, can be coordinatized via the pair pθ, ψq,
with |θ|   θ0 and �π   ψ ¤ π. The next claim is readily checked.

Lemma 3.1. A point on Torα corresponding to values for θ and φ has Carte-
sian coordinates px, y, zq � � px0�r0 cos θq cosψ , r0 sin θ , px0�r0 cos θq sinψ

�
.

Moreover,

$'''&
'''%
s21 � px� x1q2 � py � y1q2 � z2

� r20 � r21 � x20 � 2r0x0 cos θ � 2r0y1 sin θ � 2x1px0 � r0 cos θq cosψ

s22,3 � x2 � py 	 y0q2 � z2 � 2r0pr0 � x0 cos θ 	 y0 sin θq

Now recall and apply the Law of Cosine formulas for cosβ and cos γ
in Lemma 2.1. Using the coordinates system pθ, ψq, observe that B cosβ { Bψ
and B cos γ { Bψ are both zero when ψ � 0 or ψ � π (or any multiple of π),

i.e. when the point is on the xy-plane. The line
ÐÑ
AB intersects the circle C

in a unique point D (other than the point B), whose coordinates are px0 �
r0 cos θγ , r0 sin θγq for some θγ with |θγ | ¤ π. Likewise, the line

ÐÑ
AC intersects

the circle C in a unique pointE (other than the point C), whose coordinates
are px0 � r0 cos θβ , r0 sin θβq for some θβ with |θβ | ¤ π.



Angular Properties of a Tetrahedron with an Acute Triangular Base 13

Figure 5. The x1   0 case of the xy-plane analysis

It is worthwhile to record some equations that corresponds to special
possible positions of the point A. Here X denotes the center of the circle
C, and X 1 denotes the center of the circle C1. The claims made here are
straightforward to check.

Lemma 3.2.$'''''''''''''''''''''&
'''''''''''''''''''''%

x0y0 � x0y1 � y0x1 � 0 iff A is on the line
ÐÑ
XB

x0y0 � x0y1 � y0x1 � 0 iff A is on the line
ÐÑ

X 1B

x0y0 � x0y1 � y0x1 � 0 iff A is on the line
ÐÑ
XC

x0y0 � x0y1 � y0x1 � 0 iff A is on the line
ÐÑ

X 1C

y20 � x0x1 � y0y1 � 0 iff A is on the tangent line for C at B

y20 � x0x1 � y0y1 � 0 iff A is on the tangent line for C1 at B

y20 � x0x1 � y0y1 � 0 iff A is on the tangent line for C at C

y20 � x0x1 � y0y1 � 0 iff A is on the tangent line for C1 at C

A couple useful facts concerning the signs of various quantities are as
follows.

Lemma 3.3.

signpθ0 � |θβ |q � signpx1q signpy20 � x0x1 � y0y1q and

signpθ0 � |θγ |q � signpx1q signpy20 � x0x1 � y0y1q.

Proof. For now, assume that the line
ÐÑ
AC is not tangent to the circle C at

the point C. Whether
ÐÑ
AC intersects C at a point (other than C) that is on

the arc A or at a point on the other/shorter arc of C connecting B and C,
depends on the sign of x1 and on whether A is above or below the tangent
line to C at C. This latter condition depends on the sign of y20 �x0x1� y0y1.
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Of course, the sign of θ0 � |θβ | depends on whether the intersection point is
on A or on the other arc. A quick geometric inspection of all four cases makes
the first claim clear. The second claim is similarly establed.

�

Definition 3.4. Define the following quantities:

$'''''''''''&
'''''''''''%

Fβ � x0y
2
0 � x0y21 � x0x21 � 2y20x1 � 2px0 � x1qy0y1

Gβ � �y30 � y0y21 � y0x21 � 2y20y1 � 2x0x1py0 � y1q
Hβ � r0 py20 � r21 � 2y0y1q
Fγ � x0y

2
0 � x0y21 � x0x21 � 2y20x1 � 2px1 � x0qy0y1

Gγ � y30 � y0y21 � y0x21 � 2y20y1 � 2x0x1py0 � y1q
Hγ � r0 py20 � r21 � 2y0y1q

Definition 3.5. Define the following functions of the angle θ:

$&
%

pβpθq � x0y0 � y0x1 � x0y1 � r0py0 � y1q cos θ � r0x1 sin θ

pγpθq � �x0y0 � y0x1 � x0y1 � r0py1 � y0q cos θ � r0x1 sin θ

The next couple lemmas follow directly from the above definitions and
lemmas.

Lemma 3.6.$'''&
'''%

px0 cos θ0 � y0 sin θ0 � r0qpx0 cos θ0 � y0 sin θ0 � r0q � px0 � r0 cos θq2
pβpθq2 � px0 cos θ0 � y0 sin θ0 � r0qpFβ cos θ �Gβ cos θ �Hβq
pγpθq2 � px0 cos θ0 � y0 sin θ0 � r0qpFγ cos θ �Gγ cos θ �Hγq

Lemma 3.7. The derivatives of the functions pβpθq and pγpθq have the fol-
lowing properties.$''''''''''''''''''&

''''''''''''''''''%

p1βpθq � �r0py0 � y1q sin θ � r0x0 cos θ

p1βp�θ0q � y20 � x0x1 � y0y1
p1βpθβq � �r0py20 � x0x1 � y0y1qpy20 � r21 � 2y0y1q { Hβ

signpp1βp�θ0qq � �signpp1βpθβqq � signpy20 � x0x1 � y0y1q
p1γpθq � r0py0 � y1q sin θ � r0x0 cos θ

p1γpθ0q � y20 � x0x1 � y0y1
p1γpθγq � �r0py20 � x0x1 � y0y1qpy20 � r21 � 2y0y1q { Hγ

signpp1γpθ0qq � �signpp1γpθγqq � signpy20 � x0x1 � y0y1q
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The sines and cosines of θ0, θβ and θγ can be expressed as follows.

Lemma 3.8. $'''&
'''%

cos θ0 � �x0{r0 , sin θ0 � y0{r0
cos θβ � �Fβ{Hβ , sin θβ � �Gβ{Hβ

cos θγ � �Fγ{Hγ and sin θγ � �Gγ{Hγ .

Proof. The first two equations are immediate. (Note that π{2   θ0   π.) The

equation of
ÐÑ
AB is py1�y0qx � x1py�y0q. The equation of C is px�x0q2�y2 �

r20. Eliminating y, and solving for x yields x � 0 or x � 2x1px0x1 � y0y1 �
y20q { py20 � r21 � 2y0y1q. Using the latter, it can be seen that the desired point
px, yq is such that px � x0, yq � r0 p�Fγ{Hγ ,�Gγ{Hγq. The formulas for θγ
in the lemma now follow. The formulas for θβ can be similarly proved.

�

Three sinusoidal functions of interest are as follows.

Lemma 3.9. $''''&
''''%

x0 cos θ � y0 sin θ � r0 � 2 r0 sin2 θ�θ0
2

Fβ cos θ �Gβ sin θ �Hβ � 2Hβ sin2 θ�θβ
2

Fγ cos θ �Gγ sin θ �Hγ � 2Hγ sin2 θ�θγ
2

.

Proof. By Lemma 3.8, p�Fβ{Hβq cos θ � p�Gβ{Hβq sin θ � cos θβ cos θ �
sin θβ sin θ � cospθ � θβq. So, sin2rpθ � θβq{2s � r1 � cospθ � θβqs { 2 �
pFβ cos θ � Gβ sin θ � Hβq { p2Hβq. This proves the equation that involves
β. The other equations can be proved in a similar manner.

�

The following formulas for pβpθq and pγpθq, and their signs, are also useful.

Lemma 3.10.

signppβpθqq � signpx1q signpθ0 � θβq signpθ0 � θq signpθβ � θq
and

signppγpθqq � signpx1q signpθ0 � θγq signp�θ0 � θq signpθγ � θq.

Proof. From Lemmas 3.6 and 3.9, we see that pβpθq � 0 if and only if θ � �θ0
or θ � θβ . From Definition 3.5, pβpθq is a smooth function, and we see that

pβpθq � 2 εβ
a
r0Hβ sin

θ � θ0
2

sin
θ � θβ

2
and

pγpθq � 2 εγ
a
r0Hγ sin

θ � θ0
2

sin
θ � θγ

2
,
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where εβ , εγ P t�1, 1u are constants. pβpθq changes sign when θ is �θ0 or θβ ,
and nowhere else. p1βp�θ0q � y20�x0x1�y0y1, whose sign is signpx1q signpθ0�
|θβ |q, by Lemmas 3.3 and 3.7. It follows that signppβpθqq = signpx1q signpθ0�
|θβ |q � signpθβ�θ0q signpθ0�θq signpθβ�θq = signpx1q signpθ0�θβq signpθ0�
θβq � signpθβ � θ0q signpθ0� θq signpθβ � θq = signpx1q signpθ0� θβq signpθ0�
θq signpθβ � θq. Similarly for signppγpθqq.

�

Lemma 3.11.

pβpθq � 2 signpx1q signpθβ � θ0q
a
r0Hβ sin

θ � θ0
2

sin
θ � θβ

2

and

pγpθq � 2 signpx1q signpθγ � θ0q
a
r0Hγ sin

θ � θ0
2

sin
θ � θγ

2 .

Proof. Again, pβpθq � 0 if and only if θ � �θ0 or θ � θβ . Similarly, pγpθq � 0
if and only if θ � θ0 or θ � θγ . From Definition 3.5, pβpθq and pγpθq are
smooth functions. From this and from Lemmas 3.6 and 3.9, we see that

pβpθq � 2 εβ
a
r0Hβ sin

θ � θ0
2

sin
θ � θβ

2
and

pγpθq � 2 εγ
a
r0Hγ sin

θ � θ0
2

sin
θ � θγ

2
,

We also see that sign
�

sinrpθ�θ0q{2s
� � signpθ�θ0q, and sign

�
sinrpθ�

θβq{2s
� � signpθ � θβq. So, using Lemma 3.10, εβ � signpx1q signpθ0 �

θβq signpθ0 � θq signpθβ � θq � signpθ � θ0q signpθ � θβq � signpx1q signpθβ �
θ0q. Thus we obtain the first equation in the lemma. The second is proved
similarly.

�

We will now focus our attention on studying the following functions of
θ to gain a better understanding of how Q varies as a function of θ when
ψ � 0, i.e. when the point P is on C.
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Definition 3.12.$'''''''''''''''&
'''''''''''''''%

Dβpθq � B
Bθ

|
ψ�0

cosβ � B
Bθ

|
ψ�0

s21�s
2
3�b

2

2s1s3

Dγpθq � B
Bθ

|
ψ�0

cos γ � B
Bθ

|
ψ�0

s21�s
2
2�c

2

2s1s2

Dpθq � B
Bθ

|
ψ�0

Q � µDβpθq � νDγpθq
Sβpθq � signpx1q signpθβ � θ0q

a
y20 � r21 � 2y0y1 sinr12pθ � θβqs

Sγpθq � �signpx1q signpθ0 � θγq
a
y20 � r21 � 2y0y1 sinr12pθ � θγqs

Spθq � µ Sβpθq � ν Sγpθq

Lemma 3.13.

Dβpθq �
signppβpθqq py20 � r21 � 2x0x1q

a
Fβ cos θ �Gβ sin θ �Hβ

2
?

2r0 s31
,

and

Dγpθq �
signppβpθqq py20 � r21 � 2x0x1q

a
Fγ cos θ �Gγ sin θ �Hγ

2
?

2r0 s31 .

Proof. Calculations involving substitutions suggested by Lemma 3.1 lead di-
rectly to this: Dβpθq � t r�4x0r0 sin θ�2py0�y1qr0 cos θ�2x1r0 sin θ cosψ s
p2s1s3q�ps21�s23�b2q r ps3{s1q p�2x0r0 sin θ�2y1r0 cos θ�2x1r0 sin θ cosψq�
ps1{s3qp�2x0r0 sin θ�2y0r0 cos θ s u { p4s21s23q, evaluated at ψ � 0. Using Defi-
nition 3.5 and Lemma 3.6, this expands and then factors to produce py20�r21�
2x0x1q r px0 cos θ�y0 sin θ�r0q pβpθq s { r 2

?
2r0 px0 cos θ�y0 sin θ�r0q3{2 s31 s

= signppβpθqq py20�r21�2x0x1q
a
Fβ cos θ �Gβ cos θ �Hβ { r 2

?
2r0 s

3
1 s. Sim-

ilarly for Dγpθq. �

The next formulas can be checked directly by applying the half-angle
formula for sines.

Lemma 3.14.$''''''''''''''''&
''''''''''''''''%

sin
θ0�θβ

2 � signpθ0�θβq |x1|?
r21�y

2
0�2y0y1

sin
θ0�θγ

2 � signpθ0�θγq |x1|?
r21�y

2
0�2y0y1

sin
θ0�θβ

2 � signpθ0�θβq |y20�x0x1�y0y1|

r0
?
r21�y

2
0�2y0y1

sin
θ0�θγ

2 � signpθ0�θγq |y20�x0x1�y0y1|

r0
?
r21�y

2
0�2y0y1

sin
θβ�θγ

2 � signpθβ�θγq y0 |r21�y
2
0�2x0x1|

r0
?
r21�y

2
0�2y0y1

?
r21�y

2
0�2y0y1 .
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We will now discover particularly simple formulas for Dβpθq, Dγpθq and
Dpθq, provided we restrict θ to have absolute value less than θ0.

Lemma 3.15. When |θ|   θ0, we have$'''&
'''%

Dβpθq � py20 � r21 � 2x0x1q Sβpθq { p2s31q
Dγpθq � py20 � r21 � 2x0x1q Sγpθq { p2s31q
Dpθq � py20 � r21 � 2x0x1q Spθq { p2s31q

Proof. Beginning with Lemma 3.13, and applying Definition 3.4 and Lemmas
3.9 and 3.10, Dβpθq = signppβpθqqpy20�r21�2x0x1q

a
Fβ cos θ �Gβ cos θ �Hβ

{ r 2?2r0 s
3
1 s � signpx1q signpθ0 � θβq signpθ0 � θq signpθβ � θqa2Hβ py20 �

r21 � 2x0x1q | sinrpθ � θβq{2s| { p2
?

2r0 s
3
1q = signpx1q signpθβ � θ0q signpθ0 �

θq
a
y20 � r21 � 2y0y1 py20 � r21 � 2x0x1q sinrpθ � θβq{2s { p2s31q. But, signpθ0 �

θq � 1 since we are assuming that |θ|   θ0. This establishes the formula
for Dβpθq. Similarly for Dγpθq. From these, the formula for Dpθq follows
immediately.

�

The next formulas are direct consequences of Definition 3.12 and Lemma
3.14.

Lemma 3.16.$'''''''''''&
'''''''''''%

Sβpθ0q � �x1 , Sγpθ0q � �y
2
0 � x0x1 � y0y1

r0

Sγp�θ0q � x1 , Sβp�θ0q � y20 � x0x1 � y0y1
r0

Sβpθβq � 0 , Sγpθβq � sign pθγ � θ0q sign pθβ � θγq y0py
2
0 � r21 � 2x0x1q

r0
a
y20 � r21 � 2y0y1

Sγpθγq � 0 , Sβpθγq � sign pθβ � θ0q sign pθγ � θβq y0py
2
0 � r21 � 2x0x1q

r0
a
y20 � r21 � 2y0y1 .

With |θ|   θ0, we see that Dpθq � 0 if and only if Spθq � 0. Also, Spθq is a
sinusoidal function of period 4π that satisfies Spθ � 2πq � �Spθq.

Lemma 3.17. There is at most one value of θ with |θ|   θ0 for which Spθq � 0
and hence Dpθq � 0.

Proof. In fact, there cannot be more than one value of θ with |θ|   π for
which Spθq � 0. If there were, then there would also be more than one value
of θ with π   θ   3π for which Spθq � 0, because Spθ � 2πq � �Spθq. This
would mean at least four values of θ with �π   θ   3π for which Spθq � 0.
This means a sinusoidal function of period 4π (i.e a function of the form
sinrpθ� θ0q{2s�κ) is zero at least four times over a single cycle, which is not
possible.

�
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Lemma 3.18. signpy20 � r21 � 2x0x1q � signpx1q. Therefore, if |θ|   θ0, then
signrDpθqs � signpx1q signrSpθqs.
Proof. We continue to assume that α   =A   π{2. Notice that y20 � r21 �
2x0x1 � r20 � px1 � x0q2 � y21 . The sign of this is +1 if the point A is inside
the circle C, but -1 if A is outside C. When x1 ¡ 0, we require that A be
inside C because of the constraint α   =A. When x1   0, it is necessary for
A to be outside C (though it is inside C1) because of the constraint =A   π{2,
which means that A must be outside the circle that has the segment BC as
a diameter. The rest follows from Lemma 3.15.

�

Lemma 3.19. Assume that x1   0. Then,

Sp�θ0q ¡ 0 ñ Spθ0q ¡ 0 and Dp�θ0q   0 ñ Dpθ0q   0.

The equation Spθq � 0 has at most one solution θ � θ̃ such that |θ̃|   θ0.
If Sp�θ0q ¡ 0 and Spθ0q   0, then there is exactly one such root. If instead,
Sp�θ0q   0 and Spθ0q   0, then there are no such roots.

If θ̃ exists and |θβ |   θ0, then θβ   θ̃. If θ̃ exists and |θγ |   θ0, then

θ̃   θγ . If θ̃ exists, |θβ |   θ0 and |θγ |   θ0, then �θ0   θβ   θ̃   θγ   θ0.

Proof. Assume the contrary of the first implication. That is, assume that it is
possible to have Sp�θ0q ¡ 0, but Spθ0q ¤ 0. From Lemma 3.16, signr Sp�θ0q s
= signr py20 � x0x1 � y0y1qµ � r0x1 ν s and signr Spθ0q s � �signr r0x1 µ �
py20 � x0x1 � y0y1q ν s. Also, by Lemma 3.18, the signs of Spθq and Dpθq are
opposite.

Since we are assuming that Sp�θ0q ¡ 0, we must have py20 � x0x1 �
y0y1qµ ¡ �r0x1 ν. Since we are assuming that Spθ0q ¤ 0, we must have
py20 �x0x1� y0y1q ν ¥ �r0x1 µ. Now, py20 �x0x1� y0y1qpy20 �x0x1� y0y1q�
r20y

2
1 � y20py20 � r21 � 2x0x1   0. This yields a contradiction. The second

implication follows from Lemmas 3.18.

By Lemma 3.17, there can be at most one roots between �θ0 and θ0.
Now, Spθq must have an even number of roots between �θ0 and θ0 if Sp�θ0q
and Spθ0q have the same sign, and hence cannot have any roots at all in
this range. However, if the signs are different, then there must have an odd
number of roots, and hence a unique root. The remaining claims follow from
these facts.

�

Lemma 3.20. Assume that x1 ¡ 0. Then,

Sp�θ0q ¡ 0 , Spθ0q   0 , Dp�θ0q ¡ 0 and Dpθ0q   0.

The equation Dpθq � 0 has exactly one solution θ � θ̃ such that |θ̃|   θ0.

Here �θ0   θγ   θ̃   θβ   θ0.
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Proof. Since, |y1|   y0, we have y20 � x0x1 � y0y1 ¡ 0. Thus, Sp�θ0q ¡ 0 and
Spθ0q   0. The rest follows from Lemmas 3.15 through 3.18, using the same
reasoning as in the proof of Lemma 3.19.

�

This concludes the analysis of the variation of Q � µ cosβ � ν sin γ
along the arc A, as a function of θ. We next consider how varying ψ at such
points, and so moving these points vertically, affects Q. Recall that the first
derivatives of Q with respect to ψ vanishes at points on A. We consider the
second derivatives now.

Definition 3.21. Define the following:

$'''''''''''&
'''''''''''%

Eβpθq � B2

Bψ2 |ψ�0 cosβ , Eγpθq � B2

Bψ2 |ψ�0 cos γ , Epθq � B2

Bφ2 |ψ�0Q

ωβ � arctanpx1, y0 � y1q , ωγ � arctanpx1,�y0 � y1q

∆ωβ � arccos r21 � x0x1 � y0y1
r0
a
r21 � y20 � 2y0y1

, ∆ωγ � arccos r21 � x0x1 � y0y1
r0
a
r21 � y20 � 2y0y1

Tβpθq � r0
a
r21 � y20 � 2y0y1

�
cos ∆ωβ � cospθ � ωβq

�
Tγpθq � r0

a
r21 � y20 � 2y0y1

�
cos ∆ωγ � cospθ � ωγq

�
.

Note that we are using the two-parameter arctan function here, the conse-
quence of which is that

cosωβ � x1a
y20 � r21 � 2y0y1

, sinωβ � y0 � y1a
y20 � r21 � 2y0y1

cosωγ � x1a
y20 � r21 � 2y0y1

, sinωγ � �y0 � y1a
y20 � r21 � 2y0y1 .

The significance of the omega angles is given be the next lemma, which is
straightforward to check.

Lemma 3.22. The signed angle (between �π and π) subtended at C (B) be-

tween the ray from C (B) parallel to the positive x-axis and the ray
ÝÑ
CA (

ÝÑ
BA)

equals ωβ (ωγ). Thus, when x1   0, ωβ � π{2 � =C and ωγ � π{2 � =B.
But, when x1 ¡ 0, ωβ � π{2�=C and ωγ � π{2�=B.

The next lemma is clear from the definitions.

Lemma 3.23.

Tβpθq � 0 ô θ � ωβ �∆ωβ and Tγpθq � 0 ô θ � ωγ �∆ωγ .

The next couple lemmas also follow directly from the definitions, but
require some effort.
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Lemma 3.24.$''''''''''''''&
''''''''''''''%

Tβpθq � r21 � x0x1 � y0y1 � r0x1 cos θ � r0py0 � y1q sin θ

Tγpθq � r21 � x0x1 � y0y1 � r0x1 cos θ � r0py1 � y0q sin θ

Eβpθq � sign pθ0�|θ|qx1
s31

sin θ0�θ
2 Tβpθq

Eγpθq � sign pθ0�|θ|qx1
s31

sin θ0�θ
2 Tγpθq

signrEβpθqs � signpx1q signrTβpθqs
signrEγpθqs � signpx1q signrTγpθqs .

Lemma 3.25.$''''''''''''''''&
''''''''''''''''%

sinpθ0 � ωβq � x0y0�x0y1�x1y0
r0
?
r21�y

2
0�2y0y1

cos ∆ωβ � cospωβ � θ0q � r21�y
2
0

r0
?
r21�y

2
0�2y0y1

cos ∆ωβ � cospωβ � θ0q �
?
r21�y

2
0�2y0y1
r0

cos ∆ωβ � cospωβ � θβq � r21�y
2
0�2x0x1

r0
?
r21�y

2
0�2y0y1

cos ∆ωβ � cospωβ � θγq � pr21�y
2
0qpr

2
1�y

2
0�2x0x1q

r0pr21�y
2
0�2y0y1q

?
r21�y

2
0�2y0y1

Lemma 3.26. The intersection point of the tangent line of the circle C at B,

and the line
ÐÑ

CX 1 (X 1 being the center of the circle C1) is on the circle that
has BC as a diameter.

Proof. By Lemma 3.2, the intersection point is found by solving the system

$&
%

y20 � x0x� y0y � 0

x0y0 � x0y � y0x � 0.

We get px, yq � p�2x0y
2
0 { px20� y20q , y0py20 � x20q { px20� y20qq. The distance of

this point from the origin is just y0. Thus this point is on the circle that has
BC as a diameter.

�

Direct computations reveal the following.
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Lemma 3.27.$''''''''&
''''''''%

Tβpθ0q � r21 � y20 , Tγpθ0q � r21 � y20 � 2y0y1

Tγp�θ0q � r21 � y20 , Tβp�θ0q � r21 � y20 � 2y0y1

Tβpθβq � r21 � y20 � 2x0x1 , Tγpθβq � pr21 � y20qpr
2
1 � y20 � 2x0x1q

y20 � r21 � 2y0y1

Tγpθγq � r21 � y20 � 2x0x1 , Tβpθγq � pr21 � y20qpr
2
1 � y20 � 2x0x1q

y20 � r21 � 2y0y1 .

The following claims are immediately evident from Lemma 3.24.

Lemma 3.28. The function Tpθq is sinusoidal of period 2π, and as such, it
has two roots over the interval p�π, πs. Furthermore, if �π   ζ   η   π, and
if Tpζq and Tpηq are both nonzero and have the same sign, then the interval
rζ, ηs either contains both or neither of the two roots.

Here is another useful lemma, one whose proof appears to be a bit tricky.

Lemma 3.29. When x1 ¡ 0,

0   ωβ � θγ   π and 0   θβ � ωγ   π.

Proof. To prove that 0   ωβ � θγ   π, we will consider both θβ and θγ , and
their corresponding points D and E on C. See Figure 4. Because of the fact
that =C is acute, the angle θγ is constrained to be between �θ0 and π � θ0.
Consider two cases: when θ0�π   θγ   π�θ0, and when �θ0   θγ   θ0�π.
Let’s examine the first case. Fixing θγ and D, the angle ωβ is clearly greater
that it would be if we allowed A to be on the circle C, that is, if we allowed
A to equal D. For a moment, suppose that A = D. Now consider varying
θγ and D, with θ0 � π   θγ   π � θ0, we observe two facts. If θγ ¤ 0, then
certainly ωβ ¡ θγ since ωβ ¡ 0. But if θγ ¡ 0, then tan θγ   tanωβ because
of the relative positions of C, X and D, specifically the fact that D is under
ÐÑ
XC, which is positively sloped. The angles ωβ and θγ have absolute values
less that π{2, and so, 0   ωβ � θγ   π, in the first case.

Now examine the second case, which, again is when �θ0   θγ   θ0� π.
Thus, D lies on the lower half of the C. Clearly ωβ � θγ ¡ 0 since ωβ ¡ 0
and θγ   0. We must however still show that ωβ � θγ   π. With θγ and

D fixed, we will consider sliding the point A along the line
ÐÑ
BD. Begin with

A being the point of intersection of
ÐÑ
BD and the circle that has BC as a

diameter. The points A, B and D are respectively px1, y1q, p0, y0q and px0 �
r0 cos θβ , r0 cos θβq. Thus, A being on

ÐÑ
AC requires that x1pr0 sin θγ � y0q �

py1�y0qpr0 cos θγ�x0q. In addition, A is on the circle with diameter BD if and
only if r1 � y0. It can be checked that if A satisfies both of these conditions,
then x1 � rr0�x0�px0� r0qt2γsry20 � 2r0y0tγ � y20t2γs / t r0p1� t2γqrr0�x0�
2y0tγ � pr0 � x0qt2γs u and y0 � y1 � rr0 � x0 � px0 � r0qt2γs2 y0 / t r0p1 �
t2γqrr0�x0�2y0tγ�pr0�x0qt2γs u, where tγ � tanpθγ{2q � sin θγ{p1�cos θγq.
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The slope of
ÐÑ
AC in this case is tanωβ � py0�y1q{x1 � rr0�x0�px0�r0qt2s

/ ry0 � 2r0t� y0t2s. The slope of
ÐÑ
XD is tan θγ � 2t{p1� t2q.

Since ωβ � π{2 � =C   π{2, we get ωβ � θγ   π when θγ ¡ �π{2.
Assume now instead that �π   �θ0   θγ   �π{2. Now, py0�y1q{x1�2t{p1�
t2q � p1� t2qrr0�x0�2y0t�pr0�x0qt2s / tp1� t2qry0�2r0t�y0t2su. This is
negative, by the following reasoning: r0�x0� 2y0t�pr0�x0qt2 ¡ 0 because
y0�y1 ¡ 0 (because |y1|   y0), y0�2r0t�y0t2 � 2py0�r0 sin θγq{p1�cos θγq ¡
0, and p1 � t2q{p1 � t2q � sec θγ   0. Thus tanωβ   tan θγ � tanpπ � θγq.
Since ωβ and π � θγ both lie between 0 and π, it follows that ωβ   π � θγ ,
so ωβ � θγ   π.

This accounts for the case when A lies on the intersection of the line
ÐÑ
BD and the circle with diameter BD. Consider relocating A along

ÐÑ
BD. It

cannot be slid higher up since that would put it inside the circle, which is
prohibited by the requirement that =A be acute. If we instead instead slide

it down
ÐÑ
BD, then ωβ will decrease, but of course, θγ is unchanged. Thus the

inequality ωβ � θγ   π is maintained. This proves that 0   ωβ � θγ   π in
either case. Symmetric reasoning establishes that 0   θβ � ωγ   π.

�

The previous lemma can now be applied to prove the next lemma.

Lemma 3.30. If x1 ¡ 0, then Tpθq is (strictly) positive throughout the interval
rθγ , θβs.
Proof. From Lemmas 3.18 and 3.25, cos ∆ωβ   cospωβ � θγq. Using Lemma
3.29, we can then deduce that ∆ωβ ¡ ωβ � θγ , and, since ωβ ¡ 0 and
∆ωβ   π, we see that �π   ωβ � ∆ωβ   θγ . Thus, the function Tpθq has
a root in the interval p�π, πs that is not in the interval rθγ , θβs. By Lemma
3.27, Tpθβq ¡ 0 and Tpθγq ¡ 0. By Lemma 3.28, the interval rθγ , θβs cannot
contain any roots of Tpθq, and so Tpθq must instead be positive throughout
this interval.

�

The inequalities in Lemma 3.29 still hold when x1   0.

Lemma 3.31. When x1   0, 0   ωβ � θγ   π and 0   θβ � ωγ   π.

Proof. See Figure 5. Since =B is acute, the angle θγ is restricted to be be-
tween π� θ0 and θ0, which are both positive. This corresponds to a point D
on the upper half circle C whose coordinates are px0� r0 cos θγ , r0 sin θγq. By

the definition of θγ , the point D is also on the line
ÐÑ
AB. Also on the upper

half of C is a point P such that the tangent line to C at P is parallel to

the line
ÐÑ
BD. Clearly P lies along the subarc of A (in the upper half plane)

connecting B and D.
Let θP be the angle between θγ and θ0 such that P has coordinates

px0 � r0 cos θP , r0 sin θP q. Let M be the midpoint of the segment BC. It is
now straightforward to check that π�θB � =MXP � =CBA � =B. (Again,
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X denotes the center of C.) To see that =MXP � =CBA, apply a 90-degree
rotation. So, θP � π � =B ¡ θγ . So, ωβ � θγ ¡ pπ{2 � =Cq � p=B � πq �
=B �=C � π{2 � π{2�=A ¡ 0. Also, ωβ � θγ   ωβ � π{2�=C   π.

This proves that 0   ωβ�θγ   π. Symmetric reasoning establishes that
0   θβ � ωγ   π.

�

We are now prepared to show claims about the sign of Tpθq over intervals
of interest.

Lemma 3.32. Assume that x1   0.

$''''''''''&
''''''''''%

Case 1. |θβ |   θ0 ^ |θγ |   θ0 ñ
Tpθq is (strictly) positive throughout the interval rθβ , θγs;

Case 2. |θβ |   θ0 ^ |θγ | ¡ θ0 ñ
Tpθq is (strictly) positive throughout the interval rθβ , θ0s;

Case 3. |θβ | ¡ θ0 ^ |θγ |   θ0 ñ
Tpθq is (strictly) positive throughout the interval r�θ0, θγs;

Case 4. |θβ | ¡ θ0 ^ |θγ | ¡ θ0 ñ
Tpθq is (strictly) positive throughout the interval r�θ0, θ0s.

Proof. First, consider Case 1 and assume its hypothosis. From Lemma 3.25,
cos ∆ωβ ¡ cospωβ�θγq. Using Lemma 3.31, we can then deduce that ∆ωβ  
ωβ � θγ , and, since ωβ   π and ∆ωβ ¡ 0, we see that θγ   ωβ �∆ωβ   π.
Thus, the function Tβpθq has a root in the interval p�π, πs that is not in the
interval rθβ , θγs. By Lemma 3.27, Tβpθβq ¡ 0 and Tβpθγq ¡ 0. By Lemma
3.28, the interval rθβ , θγs cannot contain any roots of Tβpθq, and so Tβpθq
must instead be positive throughout this interval. By symmetry, Tγpθq must
instead be positive throughout this interval. Therefore, Tpθq must instead be
positive throughout this interval.

Next, consider Case 2 and assume its hypothosis. From Lemma 3.25,
cos ∆ωβ ¡ cospωβ � θ0q. Since π{2   ωβ   π and π{2   θ0   π, we get
0   ωβ � θ0   π{2. It follows that ∆ωβ   ωβ � θ0. Since ωβ   π and
∆ωβ ¡ 0, we see that θ0   ωβ � ∆ωβ   π. Thus, the function Tβpθq has
a root in the interval p�π, πs that is not in the interval rθβ , θ0s. By Lemma
3.27, Tβpθβq ¡ 0 and Tβpθ0q ¡ 0. By Lemma 3.28, the interval rθβ , θ0s cannot
contain any roots of Tβpθq, and so Tβpθq must instead be positive throughout
this interval.

Also from Lemma 3.25, cos ∆ωγ ¡ cospθβ�ωγq. By Lemma 3.31, we get
∆ωγ   θβ�ωγ . Since �π{2   ωγ and ∆ωγ ¡ 0, we get �π   ωγ�∆ωγ   θβ .
Thus, the function Tγpθq has a root in the interval p�π, πs that is not in the
interval rθβ , θ0s. By Lemma 3.27, Tγpθβq ¡ 0 and Tγpθ0q ¡ 0. By Lemma
3.28, the interval rθβ , θ0s cannot contain any roots of Tγpθq, and so Tγpθq
must instead be positive throughout this interval. Since, Tβpθq is also positive
throughout this interval, we find that Tpθq must also be positive throughout
this interval.
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Case 3 can be handled by a symmetric argument based on Case 2. Case
4 follows in a manner that is similar to the previous cases.

�

At last, we arrive at the principal goal of this section, namely, stating
and proving the following result.

Theorem 3.33. Apart from the apexes B and C of the toroid Torα, the quantity
Q � µ cosβ � ν sin γ (for fixed µ, ν ¡ 0) has either one or two critical points
on Torα that also lie in the xy-plane. At these points, Q has a local maximum
value.

Proof. The intersection of Torα and the xy-plane consists of two circular
arcs, as discuessed earlier. Without loss of generality, we may assume that
A has coordinates px1, y1q with x1 ¡ 0. Along the right arc A (part of C)

there is exactly one value θ̃ with |θ̃|   θ0 and Spθ̃q � 0, and so Dpθ̃q � 0

too. At the corresponding point px0 � r0 cos θ̃, r0 sin θ̃q, the quantity Q has

a critical value on Torα. Here, Dpθ̃q is decreasing, D1pθ̃q   0 and Epθ̃q   0.
Direct computation reveals that when ψ is a multiple of π, B2Q{BψBθ � 0.
Consequently, at the critical point, the Hessian determinant of Q with respect
to θ and ψ equals ���� D1pθ̃q 0

0 Epθ̃q
���� � D1pθ̃qEpθ̃q ¡ 0.

It follows that Q has a relative maximum value at this point, on Torα.
The left arc A1 (part of C1) can be analyzed by first reflecting the xy-

plane about the y-axis. This means we are now assuming that x1   0 and are
examining the right arc A again. By the foregoing analysis, the situation is
the same as before except that there might not be a value of θ with |θ|   θ0
and Spθq � 0. If there is, then it is unique, and also corresponds to a relative
maximum for Q on Torα, by the same reasoning as before. There can be no
other critical points for Q on Torα in the xy-plane, other than the apexes of
the toroid.

�

4. Additional Singularities not in the xy-plane

Our focus now shifts to the upper half of the toroid Torα, that is, the points
where z ¡ 0. Remember that both Torα and the scalar field Q � µ cosβ �
ν cos γ on it are symmetric under reflection about the xy-plane (z Ñ �z).
We will see that surface gradient

Ñ

5αQ (defined in (1.1)), on the upper half
of Torα, can have at most one singularity, and if it exists, this point cannot
correspond to a relative extreme for Q on Torα.

In this section, it will prove helpful to use a different coordinate system
than the one used in the provious sectiom, though we continue to assume that
the triangle 4ABC lies in the xy-plane. However, without loss of generality,
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we will now assume that all of its vertices lie on the unit circle in the xy-plane.
Moreover, letting pxj , yjq � pcos θj , sin θjq pj � 1, 2, 3q denote the coordinates
of A, B and C, respectively, we will further assume that θ1� θ2� θ3 � 0. By
simply scaling, translating and/or rotating the coordinate system previously
used, we can easy obtain a coordinate system of this sort. It will also be helpful
to set tj � tanpθj{2q pj � 1, 2, 3q, and to notice that cos θj � p1� t2j q{p1� t2j q,
sin θj � 2tj{p1� t2j q and t1t2t3 � t1 � t2 � t3.

Now, in order for
Ñ

5αQ to vanish at a point on Torα, it is necessary and

sufficient that
Ñ

5 cosα�
Ñ

5Q � 0 at that point. This means that
Ñ

5 cosα and
Ñ

5Q are linearly dependent. We will now study the equation

λ
Ñ

5 cosα� µ
Ñ

5 cosβ � ν
Ñ

5 cos γ � 0, (4.1)

usually treating λ, µ and ν all as variables. Later, we will pause to remember
that we are ultimately interested in whether or not a suitable value of λ exists
for given values of µ and ν. Equation (4.1) can be rewritten as follows.

Lemma 4.1.

rλ µ νs

�
�����

0 s23 � s22 � a2

2s22s3

s22 � s23 � a2

2s2s
2
3

s23 � s21 � b2

2s21s3
0 s21 � s23 � b2

2s1s
2
3

s22 � s21 � c2

2s21s2

s21 � s22 � c2

2s1s
2
2

0

�
����� � r0 0 0s . (4.2)

Proof. The following can be checked directly using the definitions in Section
2.

rλ µ νs

�
�����

0 s23 � s22 � a2

2s22s3

s22 � s23 � a2

2s2s
2
3

s23 � s21 � b2

2s21s3
0 s21 � s23 � b2

2s1s
2
3

s22 � s21 � c2

2s21s2

s21 � s22 � c2

2s1s
2
2

0

�
�����
�
� ps1ps2ps3

�
� � Ñ

0 .

Since the vectors ps1, ps2 and ps3 are linearly independent, (4.2) follows.
�

The next result is interesting and identifies clearly where nontrivial so-
lutions to (4.1) are possible.

Lemma 4.2. The determinant of the 3� 3 matrix in (4.2) is

64pt1 � t2q2pt2 � t3q2pt3 � t1q2
4s21s

2
2s

2
3p1� t21qp1� t22qp1� t23q

px2 � y2 � 1q.

Consequently, a solution to (4.1) (or (4.2)) is only possible at points on the
cylinder defined by

x2 � y2 � 1.
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Proof. Direct computation reveals that the discriminant equals ra2ps21�s22qps21�
s23q�b2ps22�s23qps22�s21q�c2ps23�s21qps23�s22qs{r4s31s32s33s. This can be expanded
in terms of x, y, z, xj and yj pj � 1, 2, 3q, and then expanded further in
terms of tj pj � 1, 2, 3q. The above formula results from simplifying this. �

Generally, each point on the cylinder x2 � y2 � 1 admits a unique
homogeneous triple pλ : µ : νq that satifies (4.1) (and (4.2)) at that point.
In this way, it is useful to consider the function on the cylinder that assigns
this homogeneous triple. We will also define ρ � ν{µ and treat this too as
a function defines on the cylinder, a function that is allowed to have 8 as a
value, so it is a function whose codomain is the real projective line.

In order to unltimately resolve the issue of singularities of
Ñ

5αQ on
Torα, it will prove useful to ignore these for a while, and instead focus on two
functions defined on upper half of the cylinder x2� y2 � 1, where z ¡ 0. Let
us denote this half cylinder by H. The functions of interest on H are ρ and
cosα. Letting the coordinates of a points on H be px, y, zq � pcos θ, sin θ, zq,
it will also be handy to set t � tanpθ{2q, so that cos θ � p1� t2q{p1� t2q and
sin θ � 2t{p1� t2q.
Lemma 4.3. At a point H, we have pλ : µ : νq �

� p1� t1tq { rpt2 � t3q
a

1� t21
a

4pt� t1q2 � p1� t21qp1� t2qz2 s :

p1� t2tq { rpt3 � t1q
a

1� t22
a

4pt� t2q2 � p1� t22qp1� t2qz2 s :

p1� t3tq { rpt1 � t2q
a

1� t23
a

4pt� t3q2 � p1� t23qp1� t2qz2 s
�
.

Thus, ρ �

�
a

1� t22 pt1 � t3qp1� t3tq
a

4pt� t2q2 � p1� t22qp1� t2qz2a
1� t23 pt1 � t2qp1� t2tq

a
4pt� t3q2 � p1� t23qp1� t2qz2 .

Proof. Equation 4.2 can be rewritten as follows:

rλ µ νs

�
��

1
s2s3 0 0

0 1
s3s1 0

0 0 1
s1s2

�
��
�
� 0 s3 cosα� s2 s2 cosα� s3
s3 cosβ � s1 0 s1 cosβ � s3
s2 cos γ � s1 s1 cos γ � s2 0

�
�

� r0 0 0s. Setting λ1 � λ{ps2s3q, µ1 � µ{ps3s1q and ν1 � ν{ps1s2q, we
see that µ1ps3 cosβ � s1q � ν1ps2 cos γ � s1q � 0. So, ρ � ps2ν1q{ps3µ1q �
�rs2ps3 cosβ�s1qs { rs3ps2 cos γ�s1qs � �rs2ps23�s21�b2qs { rs3ps22�s21�c2qs.
This can be expanded to obtain the formula in the lemma.

�

The next formula is established by writing cos2 α as ps22�s23�a2q2{p4s22s23q,
and then expanding as before, and simplifying.
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Lemma 4.4.

cosα � �4p1� t2t3qpt� t2qpt� t3q � p1� t22qp1� t23qp1� t2qz2� { �b1� t22

�
b

1� t23
b

4pt� t2q2 � p1� t22qp1� t2qz2
b

4pt� t3q2 � p1� t23qp1� t2qz2
�
.

The quantities ρ2 and cos2 α can be treated as functions of t and Z,
where Z � z2. As such, their partial derivatives are readily computed. Define:

dZ

dt

����
ρ

� � Bpρ
2q{Bt

Bpρ2q{BZ and
dZ

dt

����
α

� � Bpcos2 αq{Bt
Bpcos2 αq{BZ .

These are the relative rates of change of Z and t along a curve of constant
ρ, and along a curve of constant α, respectively. The following facts can be
immediately verified.

Lemma 4.5.

dZ

dt

����
ρ

� �pZ � 4qrp1� t22qp1� t23qp1� t2q2Z � 4pt� t2qpt� t3qppt2t3 � 1q�

pt2�1q�2pt2�t3qtqs
� { �2p1�t2qp1�t2tqp1�t3tqrpt2�t3qpt2�1q�2p1�t2t3qts

�
,

dZ

dt

����
α

� �8p1� t2tqp1� t3tqrpt2 � t3qp1� t2q � 2pt2t3 � 1qtsZs { �p1� t2q�
rp1� t22qp1� t23qp1� t2q2Z�4pt� t2qpt� t3qppt2t3�1qpt2�1q�2pt2� t3qtqs

�
,

and
dZ

dt

����
ρ

dZ

dt

����
α

� �4ZpZ � 4q
p1� t2q2   0.

An immediate consequence of the surprisingly simple last equation is
the following:

Lemma 4.6. A constant-α curve and a constant-ρ curve, on H, are never
tangent to each other at a point.

The next two lemmas follow by examining the numerators and denom-
inators of dZ{dt |ρ and dZ{dt |α.

Lemma 4.7. For each of t � �1{t2, t � �1{t3 and t � p1�
a

1� t21q{t1, there
is a vertical constant-ρ curve. Constant-α curves have horizontal tangent
lines at points where they cross these lines. Moreover, other constant-ρ curves
have no vertical tangent lines, and constant-α curves do not have horizontal
tangent lines at any other points.

Lemma 4.8. A constant-ρ curve has a horizontal tangent line, and a constant-
α curve has a vertical tangent line at points of intersection of such curves with
the curve Γ described by p1� t22qp1� t23qp1� t2q2 Z � 4pt� t2qpt� t3q r pt2t3�
1qpt2 � 1q � 2pt2 � t3q t s, and nowhere else.
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The curve Γ will actually not affect the situation we are ultimately
focused on because of the following fact.

Lemma 4.9. At any point on Γ, α ¡ =A.

Proof. Assume this is false, and consider a point on Γ where α ¤ =A   π{2.
Solving the equation in Lemma 4.8 for Z, and substituting this into the
formula for cos2 α essentially given in Lemma 4.4, we obtain

4pt� t2qpt� t3qp1� t2tqp1� t3tq
r pt2 � t3qpt2 � 1q � 2p1� t2t3qt s2 .

Now, cos2=A � pb2� c2�a2q2{p2bcq2 � p1� t2t3q2 { r p1� t22qp1� t23q s. From
these formulas, we obtain cos2 α� cos2=A �

� pt2 � t3q2 r pt2t3 � 1qpt2 � 1q � 2pt2 � t3qt s2
p1� t22qp1� t23q r pt2 � t3qpt2 � 1q � 2p1� t2t3q s2   0.

Hence cosα   cos=A, since both angles are in the range from 0 to π{2. We
conclude that α ¡ =A. This is so for any point on Γ.

�

Only the portion H0 of H for which α ¤ =A will be of further interest.
This consists of all but a bounded portion of H near the xy-plane. The next
lemma is now automatic.

Lemma 4.10. On the curve Γ, Z varies as a function of t (or equivalently θ).
When Z ¥ 0, this implies a unique value of z ¥ 0, but when Z   0, there is
no corresponding real value of z. Also, none of the curve Γ on lies on H0.

To better understand the constant-ρ curves and constant-α curves on
H0, consider the next two lemmas. The first lemma is just obtained from
Lemma 4.3 by direct computation.

Lemma 4.11. Working on H0 and keeping t fixed (so θ fixed), the limit as
z Ñ8 of ρ equals

ρ8 � � p1� t22qpt2t23 � t2 � 2t3qp1� t3tq
p1� t23qpt22t3 � 2t2 � t3qp1� t2tq .

By inverting this, we see that any given value of ρ8 corresponds to a unique
value of t equal to

� p1� t22qpt2t23 � t2 � 2t3q � p1� t23qpt22t3 � 2t2 � t3q ρ8
t3p1� t22qpt2t23 � t2 � 2t3q � t2p1� t23qpt22t3 � 2t2 � t3q ρ8 .
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Lemma 4.12. Apart from the vertical lines identified in Lemma 4.7, a constant-
ρ curve on H0 is such that Z varies monotonically as a smooth function of
t (or θ), defined over a certain interval of t (depending on the value of ρ).
A constant-α curve on H0 is such that Z varies as a smooth function of t
(or θ) for all t P p�8,8s (or θ P p�π, πs). Moreover, constant-ρ curves and
constant-α curves are connected curves.

Proof. dZ{dt|ρ is never zero on H0, and except on the special vertical lines,
it is smoothly defined and not infinite, so its sign does not change along a
constant-ρ curve. This establishes the monotonicity claim on a constant-ρ
curve. The fact that this curve is connected and unbounded follows from
Lemma 4.11.

Concerning a constant-α curve, notice that since α   =A, the inter-
section of Torα and the xy-plane consists of two circular arcs, A and A1,
connecting B and C that together enclose the unit circle in the xy-plane.
Consider generating Torα by revolving either of these arcs about the line
ÐÑ
BC. It is immediately clear that this will intersect H0 in a closed curve that
wraps one time around H0. The claims concerning a constant-α curve follow
from this fact.

�

It is now straightforward to prove the next lemma.

Lemma 4.13. A constant-α curve on H0 does not contain two points that
have the same value of ρ.

Proof. Assume this is false, and let tL   tR be such that the two point on
the curve corresponding to t � tL and to t � tR have the same value of ρ.
By Lemma 4.11, there is a corresponding point on the curve for each t in the
closed interval rtL, tRs, and ρ varies smoothly along this interval. By Rolle’s
Theorem, there exists some t̃ with tL   t̃   tR such that dρ{dt |α � 0. At the
corresponding point on the constant-α curve, this curve must be tangent to
a constant-ρ curve, but Lemma 4.6 prohibits this, a contradiction.

�

We finally arrive at the main goal of this section, namely the establish-
ment of the next result. We return to considering fixed values of α, µ and ν.

Theorem 4.14. If a singular point for the vector field
Ñ

5αQ on Torα occurs
on the upper half of Torα pz ¡ 0, α   =Aq, then it is unique and occurs on
the intersection of Torα and the half cylinder H. Moreover, it cannot be a
relative extremun point for Q

Therefore, the supremum value for Q on Torα must occur either when
approaching B or C from some direction, or at another relative extremum
point in the xy-plane. The infimum value for Q on Torα must always occur
when approaching either B or C from some direction.
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Proof. Such a singular point only occurs when
Ñ

5 cosα �
Ñ

5Q � 0. This in

turn requires that λ
Ñ

5 cosα�µ
Ñ

5 cosβ� ν
Ñ

5 cos γ � 0 for some value of λ.
Lemma 4.2 shows that this can only happen on H. Since α ¤ =A, it can only
happen on H0, by definition. Lemma 4.12 establishes that such a singular
point on the intersection of Torα and H0 must be unique.

Consider modifying Torα in a very small way, as follows. Begin with a

very small circle on Torα, near the apex B and around
ÐÑ
BC, of the sort used

in Lemma 2.9, one on which the surface gradient
Ñ

5αQ does not vanish, and
has the winding number 0, 1 or 2. This circle divides Torα into two portions,
one of which is tiny and includes B. Now alter Torα by smoothly replacing
this tiny portion with a smooth tiny region. Do likewise near the apex C
using a tiny circle near it. The result is a smooth surface on which the scalar

field Q and the vector field
Ñ

5αQ are smoothly defined.

Since the winding number of
Ñ

5αQ around the tiny circle near B is still
0, 1 or 2, the sum of the indexes of the singularities inside the new tiny
region near B must be 0, 1 or 2. Similarly near C. By Theorem 3.33, there

are either one or two other singuarities for
Ñ

5αQ on (the slightly altered) Torα
that occur in the xy-plane, and these are relative maximum points for Q. So

the index of each of these, as a singularity for
Ñ

5αQ, is one. Together the sum
of the indexes of all of the singularities considered thus far is at least one.

Now, if there is a singularity for
Ñ

5αQ in the upper half of (the slightly
altered) Torα, then it is unique, and by reflection, there is a corresponding
singularity in the lower half of (the slightly altered) Torα, and vice-versa.
The sum of the indexes of these two singularities must be an even integer.
However, it cannot exceed zero because, by the Poincaré-Hopf Theorem (see

[2]), the sum of the indexes of all of the singularities of
Ñ

5αQ on the slightly
altered Torα must equal two. This is because this surface is smooth and

homeomorphic to a sphere. Thus the index of a singularity
Ñ

5αQ in the upper
half of (the slightly altered) Torα cannot be positive, and so cannot correspond
to a relative extremum for Q. Ditto for the lower half of the slightly altered
Torα. The remaining claims now follow easily.

�

5. Completion of the Proof of Theorem 1.1 and Beyond

Proving the remaining parts of Theorem 1.1 will depend on the preced-
ing analysis concerning the scalar field Q � µ cosβ � ν cos γ on the toroid
Torα pα   =Aq. These last two parts are actually easy consequences of the
following more general assertion.

Theorem 5.1. Assuming that 4ABC is acute, that α   =A, and that µ
and ν are non-negative constants, the inequality Q � µ cosβ � ν cos γ ¥
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mintµ cos=B�ν cosp=B�αq , µ cosp=C�αq�ν cos=C u holds at all points
on Torα, other than B and C.

Proof. First, consider Q with µ � 1 and ν � 0. By Theorem 4.14, the infimum
value for Q p� cosβq occurs when approaching either B or C. The limiting
value of Q when approaching B is just cos=B, independent of the path
used to approach B. The situation is more complicated near C. By again

considering a tiny circle on Torα, near C and around
ÐÑ
BC, similar to the

circle used in Lemma 2.9 near B, it is straightforward to check that the
extreme values for β occur at the two points of intersection of the circle and
the xy-plane. These extreme values for β, when infinitesimally close to C,
are =C � α and |=C � α|. Thus, cosp=C � αq is the minimal limiting value
for cosβ when approaching C on Torα. The inequality to be proved here
therefore holds when µ � 1 and ν � 0. It similarly holds when µ � 0 and
ν � 1.

In the general case, Theorem 4.14 still guarantees that the infimum value
for Q on Torα occurs when approaching either B or C. The extreme values
for Q on the infinitesimally small circles on Torα around B and around C
are easily determined from the above special cases. The specified inequality
in the general case then follows directly.

�

We are now prepared to complete the proof of Theorem 1.1.

Proof of Part 3 of Theorem 1.1. This is just the µ � 1 and ν � 0 special
case of Theorem 5.1, since all of the cosines involved are of angles in the
range from 0 to π. This establishes Part 3 of Theorem 1.1.

�

Proof of Part 4 of Theorem 1.1. Consider the special case of Theorem 5.1
where µ � cos=C and ν � cos=B. Here we obtainQ ¥ mint cos=C cos=B�
cos=B cosp=B � αq , cos=C cosp=C � αq � cos=B cos=C u ¥ mint cos=C
cos=B� cos=B cosp=B�=Aq , cos=C cosp=C �=Aq� cos=B cos=C u �
mint0, 0u � 0. This establishes Part 4 of Theorem 1.1.

�

Note: If we regard the constaints in Theorem 1.1 as describing a region in
the 3-dimensional real space of all possible triples pα, β, γq, this region is
bounded. It is “nearly” a non-convex polyhedron, typically. Figure 6 shows
an example. The last set of constraints in Theorem 1.1 are nonlinear, which
is why the region fails to be a polyhedron.

Note: The problem considered in this paper can be flipped. Instead of asking
what restrictions given A, B and C place on α, β and γ, we could instead ask
what restictions given α, β and γ place on A, B and C. This problem is also
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Figure 6. Bounding region

non-trivial, though it is simpler. The interested reader is encouraged to ex-
plore it via an evident system involving six applications of the Law of Cosines.

Note: While the possible triples pα, β, γq have been of primary interest, a
related issue is constraining the possible triples of dihedral angles (angles
between faces of the tetrahedron) at the point P . Three equations involving
these, the other three dihedral angles (involving the face ∆ABC), and the
known interior angles of ∆ABC, can be helpful for this. Still, useful con-
straints here seem to be at least as complicated as the constrains for the
pα, β, γq triples.

Note: Besides the set of constraints in Theorem 1, some “near constraints”
have also been discovered:

α ¤ =A ^ =B ¥ =C ^ =B ¤ =A�=C Ñ
p=Aq pβ � γ � αq � p=B �=Cq pα� β � γq ¤ 2=A=B,

and
α ¤ =A ^ =B ¥ =C ^ β ¥ =B Ñ

p=Aq pβ � γ � αq � p=B �=Cq pβ � γ � αq ¤ 2=A=C,

and suitable permutations of these. While these appear to further restrict the
region of allowable pα, β, γq triples, they have not been rigourously proved to
do so. In fact, there is some evidence that they fail very slightly but only very
near the triangle vertices, A, B and C. Though evidence has been gathered,
for different triangles, these claims are currently only conjectural.

Note: The appendix contains the C++ source code for a computer program
that can be used to explore and test how well the constraints in Theorem 1.1
perform in describing the region of all allowable pα, β, γq triples, as a subset
of the cube r0, πs3, for specified values of A, B and C. It is also available
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at https://github.com/mqrieck/tetrahedron test.cpp. Besides gather-
ing data, it can also be used to visualize (via slices) this region of allowable
pα, β, γq triples, as well as the bounding region described by the Theorem 1.1
constraints. As suggested by Figure 6, these regions are geometrically rather
interesting.

It is clear from such experiments that the constraints do a fairly good
job bounding the allowable pα, β, γq triples, but these experiments also clearly
suggests that additional constraints, including linear constaints, should be
added to the system to achieve a system that strongly bounds the triples.
Also, by “uncommenting” a “define directive” in the program, it can be al-
tered to include the “near constraints” mentioned in the previous note, but
the improvement from these additional constraints is rather modest.
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Appendix

// tetrahedron_test.cpp (by M. Q. Rieck)
// Note: This is test code for the results in my "tetrahedron and toroids" paper.
// Note: This C++ program uses passing-by-reference. It can be easily converted to a C
// program by altering this aspect of function call, and by changing the includes.

#include <cstdio>
#include <cmath>

#define M 1000 // how many (alpha, beta, gamma) points (M^3)?
#define N 80 // how fine to subdivide the interval [0, pi]
#define O 1 // set higher to avoid low "tilt planes"
#define pi M_PI
// #define USE_NEAR_RULES

// The tau’s are "tilt angles" for three planes, each containing one of the sidelines of
// the triangle ABC. Dihedral angle formulas are used to find the "view angles", alpha,
// beta and gamma, at the point of intersection of the three planes.
bool tilt_to_view_angles(double tau1, double tau2, double tau3, double cosA, double cosB,

double cosC, double& alpha, double& beta, double& gamma, int& rejected) {
double cos_tau1, cos_tau2, cos_tau3, sin_tau1, sin_tau2, sin_tau3;
double cos_delta1, cos_delta2, cos_delta3, sin_delta1, sin_delta2, sin_delta3;
cos_tau1 = cos(tau1), cos_tau2 = cos(tau2), cos_tau3 = cos(tau3);
sin_tau1 = sin(tau1), sin_tau2 = sin(tau2), sin_tau3 = sin(tau3);
cos_delta1 = sin_tau2 * sin_tau3 * cosA - cos_tau2 * cos_tau3;
cos_delta2 = sin_tau3 * sin_tau1 * cosB - cos_tau3 * cos_tau1;
cos_delta3 = sin_tau1 * sin_tau2 * cosC - cos_tau1 * cos_tau2;
sin_delta1 = sqrt(1 - cos_delta1*cos_delta1);



Angular Properties of a Tetrahedron with an Acute Triangular Base 35

sin_delta2 = sqrt(1 - cos_delta2*cos_delta2);
sin_delta3 = sqrt(1 - cos_delta3*cos_delta3);
alpha = acos((cos_delta1 + cos_delta2 * cos_delta3) / (sin_delta2 * sin_delta3));
beta = acos((cos_delta2 + cos_delta3 * cos_delta1) / (sin_delta3 * sin_delta1));
gamma = acos((cos_delta3 + cos_delta1 * cos_delta2) / (sin_delta1 * sin_delta2));
if (alpha < 0 || alpha > pi || beta < 0 || beta > pi || gamma < 0 || gamma > pi ||

alpha > beta+gamma || beta > gamma+alpha || gamma > alpha+beta || alpha+beta+
gamma > 2*pi) { rejected++; return false; } else return true;

}

void clear_array(int a[N][N][N]) {
for (int i=0; i<N; i++)

for (int j=0; j<N; j++)
for (int k=0; k<N; k++)

a[i][j][k] = 0;
}

int ind(double angle) {
int i = (int) (N*angle/pi);
if (i < 0) i = 0;
if (i >= N) i = N-1;
return i;

}

void show_array(int a[N][N][N]) {
printf("\n\n\n");
for (int i=0; i<N; i++) {

for (int j=0; j<N; j++) {
for (int k=0; k<N; k++) {

switch (a[i][j][k]) {
case 0: printf("."); break; // a "prohibited" cell that is empty
case 1: printf("x"); break; // a "prohibited" cell containing a data pt.
case 2: printf(" "); break; // an "allowable" cell that is empty
case 3: printf("o"); // an "allowable" cell containing a data pt.

}
}
printf("\n");

}
printf("\n");
for (int k=0; k<N; k++) printf("_");
printf("\n\n");

}
printf("\n");

}

int main() {

int states[N][N][N], state, total, count0, count1, count2, count3, rejected = 0;
double A, B, C, cosA, cosB, cosC, sinA, sinB, sinC, alpha, beta, gamma, tau1,

tau2, tau3;

// Set angles for an ACUTE base triangles ABC
A = 8*pi/19; B = 6*pi/19; C = 5*pi/19;

cosA = cos(A); cosB = cos(B); cosC = cos(C);
sinA = sin(A); sinB = sin(B); sinC = sin(C);
clear_array(states);

// Use 3D array to record possible (alpha, beta, gamma) triples for given triangle
for (int i=O; i<M-O; i++)

for (int j=O; j<M-O; j++)
for (int k=O; k<M-O; k++)

if (tilt_to_view_angles(i*pi/M, j*pi/M, k*pi/M, cosA, cosB, cosC, alpha,
beta, gamma, rejected)) states[ind(alpha)][ind(beta)][ind(gamma)] = 1;

// Also use array to record which cells in the array are within system of bounds
for (int i=0; i<N; i++)

for (int j=0; j<N; j++)
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for (int k=0; k<N; k++) {
alpha = (i+.5)*pi/N;
beta = (j+.5)*pi/N;
gamma = (k+.5)*pi/N;
if (

A + beta + gamma < 2*pi &&
alpha + B + gamma < 2*pi &&
alpha + beta + C < 2*pi &&
(alpha > A || beta < B || beta < C + alpha) &&
(alpha > A || gamma < C || gamma < B + alpha) &&
(beta > B || gamma < C || gamma < A + beta ) &&
(beta > B || alpha < A || alpha < C + beta ) &&
(gamma > C || alpha < A || alpha < B + gamma) &&
(gamma > C || beta < B || beta < A + gamma) &&
(alpha > A || cosC * cos(beta) + cosB * cos(gamma) > 0) &&
(beta > B || cosA * cos(gamma) + cosC * cos(alpha) > 0) &&
(gamma > C || cosB * cos(alpha) + cosA * cos(beta) > 0)

#ifdef USE_NEAR_RULES
&& (alpha > A || B < C || B > A + C ||

A * (beta + gamma - alpha) + (B - C) * (alpha + beta - gamma) < 2 * A * B)
&& (alpha > A || C < B || C > A + B ||

A * (gamma + beta - alpha) + (C - B) * (alpha + gamma - beta) < 2 * A * C)
&& (beta > B || C < A || C > B + A ||

B * (gamma + alpha - beta) + (C - A) * (beta + gamma - alpha) < 2 * B * C)
&& (beta > B || A < C || A > B + C ||

B * (alpha + gamma - beta) + (A - C) * (beta + alpha - gamma) < 2 * B * A)
&& (gamma > C || A < B || A > C + B ||

C * (alpha + beta - gamma) + (A - B) * (gamma + alpha - beta) < 2 * C * A)
&& (gamma > C || B < A || B > C + A ||

C * (beta + alpha - gamma) + (B - A) * (gamma + beta - alpha) < 2 * C * B)
&& (alpha > A || B < C || beta < B ||

A * (beta + gamma - alpha) + (B - C) * (beta - alpha - gamma) < 2 * A * C)
&& (alpha > A || C < B || gamma < C ||

A * (gamma + beta - alpha) + (C - B) * (gamma - alpha - beta) < 2 * A * B)
&& (beta > B || C < A || gamma < C ||

B * (gamma + alpha - beta) + (C - A) * (gamma - beta - alpha) < 2 * B * A)
&& (beta > B || A < C || alpha < A ||

B * (alpha + gamma - beta) + (A - C) * (alpha - beta - gamma) < 2 * B * C)
&& (gamma > C || A < B || alpha < A ||

C * (alpha + beta - gamma) + (A - B) * (alpha - gamma - beta) < 2 * C * B)
&& (gamma > C || B < A || beta < B ||

C * (beta + alpha - gamma) + (B - A) * (beta - gamma - alpha) < 2 * C * A)
#endif

) states[i][j][k] += 2;
}

// Show slices of the array, indicating the nature of each cell.
show_array(states);

// Compute and display statistices for the given triangle ABC.
total = count0 = count1 = count2 = count3 = 0;
for (int i=0; i<N; i++)

for (int j=0; j<N; j++)
for (int k=0; k<N; k++) {

switch (states[i][j][k]) {
case 0: count0++; break;
case 1: count1++; break;
case 2: count2++; break;
case 3: count3++;

}
total++;

}
printf("Number of occupied allowable cells: %d\n", count3);
printf("Number of unoccupied allowable cells: %d\n", count2);
printf("Number of occupied unallowable cells: %d\n", count1);

printf("Number of unoccupied unallowable cells: %d\n", count0);
printf("Total number of cells in the array: %d\n", total);
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printf("Number of rejected calls for a data point: %d\n", rejected);
printf("(Note: near the boundary, an \"unallowable\" cell might actually ");
printf("have an allowable portion.)\n\n");

}
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