Angular Properties of a Tetrahedron with
an Acute Triangular Base

M. Q. Rieck

Abstract. From a fixed acute triangular base AABC), all possible tetra-
hedra in three-dimensional real space are considered. The possible angles
at the additional vertex P are shown to be bounded by certain inequali-
ties, mostly linear inequalities. Together, these inequalities provide fairly
tight bounds on the possible angle combinations at P.

Four sets of inequalities are used for this purpose, though the
inequalities in the first set are rather trivial. The inequalities in the
second set can be established quickly, but do not seem to be known.
The third and fourth set of inequalities are proved by studying scalar
and vector fields on toroids. The first three sets of inequalities are linear
in the angles at P, but the last set involves cosines of these angles. A
generalization of the last two sets of inequalities is also proved, using
the Poincaré-Hopf Theorem.

Extensive testing of these results has been done using Mathemat-
ica and C++4. The C++ code for this is listed in an appendix. While it
has been demonstrated that the inequalities bound the possible combi-
nations of angles at P, the results also reveal that additional inequali-
ties, in particular linear inequalities, exist that would provided tighter
bounds.
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1. Introduction and the Main Result

Using a fixed acute triangle AABC' in three-dimensional real space, consider
any point P that is not coplanar with A, B and C. Together, A, B, C' and
P form the vertices of a tetrahedron. Following standard practice, ZA, /B
and ZC will be used to denote the interior angles of AABC. The angles
/LBPC, ZCPA and ZAPB will be denoted «, 5 and -, respectively. We will
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be interested in the limitations that the angles ZA, ZB and ZC place on the
angles «, 8 and . This turns out to be more complicated than one might
initially imagine. All angles will be measured in radians. The side lengths of
ANABC opposite A, B and C will be denoted a, b and ¢, respectively.

Theorem 1.1. Using the above setup, the following constraints on the possible
values of (a, B,7) hold:

1. a<fB+vy, <vy+a,vy<a+f, a+p+7vy <2,

2. LA+B+y<2m,a+LB+v<2m, a+f+LC < 2m,

3. a</4A — B <max{4B,4C+a}, and suitable permutations of this,

4. a < LA — cosZC cosfB+cos ZBcosy > 0, and suitable permutations
of this.

“Suitable permutations” means permuting the symbols “A”, “B” and “C”,
and permuting the symbols “a”, “8” and “y”, together, in the same way.
The right arrows are logical implications. Of course, an implication p — ¢ is
logically equivalent to the disjunction —p v ¢q. (“A”, “v” and “—” are used
here for the basic logical operations of conjunction, disjunction and negation.)

While tetrahedra have been studied in some depth, over many years,
the last three sets of constraints in the theorem do not seem to be known, al-
though the constraints in the first set are trivial. For instance, [1] has two sub-
stantial chapters devoted to tetrahedra, including various interesting results
that generalize classical results on triangles, but does not mention anything
like the above constraints on the interior angles of the tetrahedron’s faces.
These constraints could potentially be of wide practical use in areas such as
molecular geometry, tetrahedral finite-element meshes, and camera-tracking,
particularly the so-called “perspective 3-point problem” (see [3]).

A Cartesian coordinate system (z, y, z) will be fixed for three-dimensional
real space. For simplicity, and without loss of generality, we will henceforth
assume that A, B and C are located on the xy-plane, and usually that P lies
above this (i.e. z > 0 for P). However, as part of the analysis, sometimes it
will be useful to relax this restriction, and allow P to be on or below the xy-
plane. The first two sets of constraints in the theorem are easily established
by means of a “spherical model,” as follows.

Proof of Parts 1 and 2 of Theorem 1.1. Assume that P is above the zy-plane.
Consider a sufficiently small sphere centered at P, and contained in the up-

per half-space (z > 0). The rays PA, PB and PC intersect the sphere at
points A’, B’ and C’ respectively. After rescaling space (for the purpose of
this proof only), so that the sphere now has radius one, the great-circle dis-
tance between B’ and C’ is «, and similarly for the other two such pairs of
points. Thus, A’, B’ and C’ are the vertices of a spherical triangle whose side
lengths are «, § and 7. The first set of constraints (Part 1) in the theorem are
simply the well-known constraints for the side lengths of a spherical triangle
on a unit sphere.
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Next, consider the great circle that is the intersection the sphere and a
plane parallel to the xy-plane. The points on this great circle have the same

value of z as P. The sideline BC of AABC is parallel to a line through P
that cuts this great circle in two antipodal points D and D’. Choose these

so that the rays PD and BC point in the same direction. Similarly obtain
antipodal points F and E’, and antipodal points F' and F”, with PE and C' A

pointing in the same direction, and with PF and AB pointing in the same
direction.

The plane containing P, B and C also contains B’, C’, D and D', and
we see that these latter four points lie on a common great circle. Likewise for
the points C’, A’, E and E’, and for the points A’, B’, F and F’. Of course
the points D, D', E, E’', F and F’ all lie on the great circle that is parallel to
the zy-plane. It is then straightforward to check that great-circle distances
between D and E’, between E’' and F', between F' and D’, between D’ and
E, between E and F’, and between F’ and D are respectively, ZC, ZA, /B,
/C, LA and ZB.

The points A’, B’ and C’ are all located in the lower hemisphere, that
is, they have z coordinates that are less that the z coordinate of P. Now,
the points A’, E' and F form a spherical triangle, and the arc from A’ to E’
extends the arc from A’ to B’, while the arc from A’ to F extends the arc
from A’ to C'. Since the distance from A’ to B’ is 7, and the distance from
A’ to C" is B, it follows that LA + 8 4+ v < 2x. Similarly for the other two
constraints in Part 2 of the theorem.

a

In order to prove the other two parts of the theorem, it will be helpful
to study certain functions (scalar fields) on certain toroids, and their surface
gradient vector fields. This forms the content of Sections 2, 3 and 4 of this
article. In Section 5, the proof of the remaining parts of Theorem 1.1 will
be presented. By a toroid, we here mean the surface generated in three-
dimesional real space by rotating a circular arc about its endpoints. We will
only be interested in toroids whose endpoints are two of the three triangle
vertices A, B and C. In fact, we will primarily focus on an arbitrary toroid
T generated by an arc whose endpoints are B and C, and can then argue by
symmetry that certain claims about it can be adapted to toroids generated
by arcs whose endpoints are A and B, or A and C. We will call B and C' the
apezes of the toroid 7.

Lemma 1.2. Given a toroid T with apexes B and C, all of the points on T
other than B and C have the same value for the angle « = LBPC. Moreover,
no other point in space has this value for «.

Proof. By the Inscribed Angle Theorem, all of the points on the arc used
to generate 7 (with endpoints B and C) have the same value for a. When

a point on this arc is rotated about the line BC, its value of « is clearly
unchanged. Thus, the points on 7 have the same value for the angle . Any
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FiGURE 1. Example of Tor, with contours for a scalar field

other point in space, not on BC|, can be rotated about BC to a point in the

«—>
zy-plane that is on the same side of BC' as the arc used to generate 7, and
in this half-plane, it will either be inside or outside the arc. If it is inside the
arc, then its value of o will be greater than that of the points on the arc. If
instead it is outside the arc, then its value of o will be less than that of the
points on the arc.

a

Now, given a value for a with 0 < a < 7, we will hencefoth let Zor,,
denote the toroid consisting of points that have the specified value of «,
together with the apexes B and C. We will also fix non-negative numbers p
and v, not both zero, and will let

Q = pcosf + vcosy.

We will be interested in studying @ as a scalar field on Zor,, (varying P).
Contours for this can be seen in Figure 1. We will also examine the surface

gradient vector field 17, @, defined as follows:

- - . cosa — COS (v X COS (v X
an = VQ - —>VQ v—) V cosa = v =3 (v—y VQ)’
YV cos - \/ COS & YV Cos & - \/ Cos &

(L.1)
where the other gradients involved in this are gradients in three-dimensional
space. Of course, %a @ at a point on Jor, will be tangent to this surface.
Similarly define the surface gradient %a s for any scalar field s in three-
dlmensmnal space. Note that in the formula for va @, we could substitute

va in place of vcosa However, in the analysis presented in the next few
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sections, it 1s more convement to work with vcosa Vcosﬂ and Vcos v,
rather than Va Vﬂ and V’y

We will now begin a careful analysis of the vector field 7, Q) on Zor,,
and its implication for the scalar field Q. However, this will be limited to the
case where a < Z A, and where the triangle AABC is acute. In Section 2, the
apexes B and C of Tor,, are investigated. Since these are the two points where
TJor, is not smooth, some extra care needs to be taken. Upon replacing tiny
cone-like neighborhoods of these points with tiny smooth surfaces that avoid

B and C, it will be discovered that the winding number of 7, @ around the
circular boundary of either of these tiny surfaces is always 0, 1 or 2. In this

way, each of B and C' can be regarded as a singularity for 5/, @ on Zor, of
index 0, 1 or 2. (Winding numbers and indexes of singularities are discussed
in [2].)

In Section 3, it will be shown that apart from B and C, there is al-

.
ways one or two (literally) other singularities for 7, Q on Tor,, lying in
the xy-plane, and that these are necessarily local maximum points for Q.
In Section 4, additional singularities, not in the zy-plane, are considered. It
is shown that there is at most one such singularity in the upper half of the
toroid (z > 0), and a corresponding singularity in the lower half (z < 0).
Using the Poincaré-Hopf Theorem (see [2]), it is established that these can-
not be points where () takes on a local extreme value. Thus, () cannot have
an extreme value at a point on Zor, that is not on the zy-plane. In Section
5, this fact is exploited to establish the third and fourth parts of Theorem 1.1.

2. Toroid Apexes as Singularities

In order to make headway in proving the remaining constraints in Theorem 1,
it will be helpful to employ some vector analysis. The quantities cos o, cos 8
and cos~y will be considered as functions of the variable point P = (z,y, z)
in three—dimensional real space, and as such, regarded as scalar fields. Their

gradients, v cos @, V cos ﬂ and v cos~y, are partlcularly 1mportant vector
fields here. Let 31, 55 and 83 be the vector fields PA PB and PC’ respectively.

Let s; = |s;] and & = s;/s; (j = 1,2,3). A series of lemmas will now be
stated and proved.

Lemma 2.1. v/s; = —5;, V-5, = —2/s; and v x§; =0 (j =1,2,3). Also,
§3-83 = cosa = (s3+s5—a?)/(2s283), §3-51 = cos B = (s3+57—b?) /(25351)
and 83+ 51 = cosy = (82 + 53 — c?) / (2s152).

Proof. First consider the vector field s = —(xi+yj +Zk) the scalar field s =
5| = /22 + 42 + 22, and the unit vector field 5 = s /s. Stralghtforward

— ~

computations show that Vs = =5, v-s = =3, V-5 = (s v S —5-
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toC

FIGURE 2. A cone near the apex B

~

- - — - - — - S
vs)/s? = =2/s, yxs =0, andyx8=vY(s)xs+styxs =
s725x s = 0. Now, the vector field s—; (j = 1,2,3) is simply a translation of
the vector field s, and thus the first few formulas in the lemma immediately
follow. The remaining ones hold by a basic property of dot products.

Lemma 2.2.

- 1
vcosa = —[(83cosa—52)32 + (szcosa—83)33]
5253
s3—s2—a® . s3—si-ad® .
= 3 So + 95052 S3 ,
25553 8983

and similarly for <7 cos 8 and <7 cos~y.

Proof. Using calculus and the Law of Cosines, we see that 5/ cosa = v/ [ (s3+
52 —a?)/(2s283)] = [(—2s28% — 25383)(2s283) — (83 + 53 — a?)(—2s385 —
25253) ] / (4s3s3) =

—1 [s3—53+a® . N 53 —s3+a? ,\]

5283 252 52 283 3 B
—1 ~ ~
—— [(s2 —sgcosa) §3 + (83 —sacosa)$3],
5253

from which, the claims in the lemma immediately follow.
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In the present section only, we will require a certain cone-based coor-
dinate system, centered at B, and associated basis vectors, as follows. Let’s
begin with cylindrical coordinates centered at B such that the axis of the

cylinders is BC. Given a point P in space, consider its orthogonal projection

P’ onto BC, and let p = |PP’|. Let § be the signed distance from B to P,
signed so that C is in the negative direction. Consider the cylinder of radius

p with axis BC'. This cylinder intersects the zy-plane in two lines. Consider

“«—>
the one that is on the side of BC that is opposite to the side containing A,
and call this line ¢. Let ¥ be the signed angle, between —7 and 7, that is
«—>

made when moving perpendicular to BC, along the cylinder, from a point
on ¢ to P.

The triple (9, p, 1) are the desired cylindrical coordinates. To convert
these to the cone-based coordinates, set ¢ = arctan(p /|d|), and use the triple
(9, ¢,1). Our attention will be restricted to points for which § > 0 and this
will tacitly be assumed. We are actually only interested in points P for which
0 is a small positive number. See Figure 2.

Next, define some vectors related to the cone-based coordinates, as fol-
lows:

~ —>
o S X BC o ~
S = e S9 = 89 X S9.
|52 x BC|
4 — —
BC = s3 — sy is the vector pointing from B to C, of length a. Of course,

the unit vector §3 points from P towards B. Consider the cone containing
> o
P that has apex B and axis BC, as in Figure 2. The unit vector ss points

along the circle on the cone that contains P and is orthogonal to BC, and
w.l.0.g., assume this is in the direction of increasing . The unit vector s3
points orthogonal to the tangent plane for the cone at P, pointing out of
the cone. Together, {$3, s, 802} constitute an orthonormal basis for the vector
space we get by using P as the origin. The next few lemmas are steps in the

goal of expressing 5/, cos 8 and v/, cos~ in terms of §, ¢, 1, 53, $3 and .902, for
small positive § (so P near apex B).

Lemma 2.3.

51 = (dsec ¢ + ccos LB cos ¢ + csin £ B sin ¢ cos 1)) Sz
+ c¢(cos £ZBsin ¢ — sin ZB cos ¢ cos ) $3
— csinLBsinwsog and

s5 = (8secd+ acos) S + asing

Proof. We begin with the vector P since this is easier to handle. Consider
the right triangle having the segment BC' as hypotenuse, and having one
“—>

of its legs along the line BP. This leg has length acos ¢, and the other leg



FI1GURE 3. Relationship between certain angles

has length asin ¢. $5 is parallel to the former leg, and $5 is parallel to the
latter leg. At P, the unit vector s3 points out of the constant-(d,¢) cone
containing P. It follows that B—C)' = 53 — 55 = acosd Sy + asin ¢ 55. Observe
that so = dsec . Thus, s3 = s9 + B%’ = dseco 5y +acospsy +asing sy =
(dseco + acosd) §3 + asin ¢ $5.

Now we will focus on the vector s1. Let P’ be the orthogonal projection
of P onto the line B(—C)’ Observe that ];3’ = pn = dtan¢n, where n =
sin ¢ §5 — cos ¢ So, a unit vector which at P, points towards P’. Also, P’_é =
§BC =4 (cos ¢ §3 +sin ¢ 52). Next, we seek a suitable expression for B—1)4 For
this purpose, notice that /, defined as cost) R + sine so = costsin ¢ §5 —
cos 1) cos ¢ S5 + sin 502, is a unit vector that is in the xy-plane, perpendicular
the vector B?E , and points in the general direction of A (as opposed to away
from it). It can now be checked that BA = ¢ (cos /BBC + sin /B m) =
c[cos 4B (cos ¢ $3+sin ¢ 32) +Sln /B (cos 1 sin ¢ §5—cos 1) cos ¢ §—sin 1 s3)].

So now, 81 = PA PP’ + P’B + BA and the claim made in the lemma
about this vector follows directly, with a little trigonometry.

The constant-¢ cone containing P, near B, is intended to be an ap-
proximation to the portion of the toroid Zor, containing P. Its value of «
is approximately equal to the angle ¢ associated with the cone. The next



Angular Properties of a Tetrahedron with an Acute Triangular Base 9
proposition provides the precise relationship between ¢ and a.

Proposition 2.4. A point P whose cone-based coordinates (with respect to B,
as defined above) are (0,¢,v) lies on the toroid Tor, for the value of o that
satisfies

acos ¢ sin ¢ dtan ¢

t = — d t — = 2.1
e 0+ acos? ¢ an an(¢ — ) a+46 . (2.1)

Proof. By rotating about BC' as needed, we may assume that P is in the
xy-plane, and on the circular arc A that generates Zor,. Let r denote the
radius of this circle, and let X denote its center. Let ¢ be half of the angle
/ZBXP. See Figure 3.

Since |BP| = &sec¢, we see that 27 sint = dsec$. Notice that r =
|XP| = |XB| = (a/2) csca. Now, ¢ = ¢ — a by the following reasoning. Let

D be an arbitrary point on BC but on the side of B that is opposite of the
side containing C'. Consider also the tangent ray to A at B, and let E be
an arbitrary point along it. This arc is the longer of the two arcs on the
circle that connect B and C since a < ZA. Let M be the midpoint of the
segment BC. Note that « = ZBPC = /ZMXB = /DBE. But ¢ = ZDBP
and « = ZEBP, and so ¢ = a + ¢. This reasoning involves rotating a couple
angles by 90 degrees.

We now see that dsec¢ = 2rsint = acscasin(¢ —a) = a (sin¢ cot o —
cos @). This can be rewritten as the left equation in (2.1). To show the rest,
use tan(¢ — ) = (tan ¢ — tan «) / (1 + tan ¢ tan «), substitute and simplify.

a

The following is quickly proved by basic trigonometric reasoning, pos-
sibly using the Lemma 2.3.

Lemma 2.5.
53 = (ccosZB+6)?+ (csin LB+ pcosi))? + p?sin? ¢
= ?+2cd(cos ZB +sin ZBtan ¢ cos 1)) + 52 sec? ¢
s3 = 024 p? = §%sec? ¢
2 = (a+6)2+p* = a®+2ad + 6%sec’ ¢

The following two facts about gradients are useful and straightforward
to check.

Lemma 2.6.

- 1o COt¢ o

VY = -8 = 5 52 and V¢ =

hS

Now, consider v/, cos and v/, cosy expressed in terms of the basis
{83, 302, S2} when ¢ is a small positive number, and so P is close to B. Sub-
stantial manipulations are required to establish the following two lemmas,
but this work is straightforward to do, and a sketch for how this might go is
provided below. Here R denotes the circumradius of the triangle AABC.
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R
Lemma 2.7. Write </, cosf = kg1 S2+Kp2 S2+ Kas s9. The coefficients here
are such that as § — 0%,

2Rk = —sin®ZBcesc/Ccos¢ (1 +cot LAtangcosy) + O(6)
2Rkgy = —0cscLAtand kg1 + O(6?)
2RkKp3 = cotLAsin® ZBcsc/Csinyy + O(6).

Lemma 2.8. Write 7, cosy = Ky1 82 +Ky2 82+ K3 302. The coefficients here

are such that as § — 0%,

2Rky1 = —cscLAsinZBcot LC + cos LB (cos LB cscLC
—cscLA) cos? ¢ + csc LAsin LB cesc LCsin(LA — £B)
-cos ¢ sin ¢ cos1p + sin® ZB esc £C'sin? pcos?1p + O(0)
2Rk, = —0cscLAtang ky1 + O(6%)
dkyg = sinZBcos¢siny + O(9).

Sketch of proof of Lemmas 2.7 and 2.8. Useful substitutions for deriving the
claimed formulas come from the previous lemmas and from equation (1.1)
with either cos 8 or cos+y used in place of Q). Each of kg1, kg2, kg3, Ky1, Ky2
and 6 k3 can be expressed as a Taylor’s series in 6. To obtain the claimed
formulas, it is only necessary to compute the first nonzero term in each series.

a

We are now ready to state and prove the main claim about B and C

as singularities for the surface gradient v/, on the surface Zor,. This will
later be needed to prove the last part of Theorem 1.1

Lemma 2.9. Fiz o with 0 < a < LA, and consider the toroid Tor,. Consider
a small circle on this toroid near the apexr B. Specifically, using the cone-
based coordinates introduced earlier, the circle should consist of points having
the same values of § and ¢. If § is a sufficiently small positive number, then

the vector field <7,Q does not vanish on this circle, and its winding number
around this circle, on the surface Tory, is either 0, 1 or 2. Similarly for a
small circle near the apex C.

Proof. 1t is clear from Lemmas 2.7 and 2.8 that when ¢ is sufficiently small,
and sint is not comparitively small, the S part of v,@ overwhelmingly

dominates, provided that v > 0. This means that the vector v/, Q) essentially
continues to point either forward or backward when moving around the cir-
cle, except when sin becomes small. The only time when sinvy becomes
sufficiently small so as to affect this behavior is near the zy-plane.

The vector only has a possibility of vanishing at the xy-plane. This
would require that p kg1 + v k1 = 0. If this happens, then simply start over
using a smaller value of §. Since (2.1) indicates how «, § and ¢ are related,
and since we are not changing «, we see that the change in § will result in a
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different value for ¢. It can be checked directly that p kg1 + v k1 = 0 with
¥ = 0 or ¢ = 7 happens only when v/u = —sinZB/ sin(£B F ¢). (u and
v are constants here.) Thus, reducing § to obtain a smaller circle will change
¢, and thereby eliminating the issue of a vanishing vector.

Now, when approaching the xy-plane, the vector will shrink to a smaller,
but nonzero, size, and when crossing the xy-plane, it will make a half rotation
before enlarging again and essentially pointing forward or backward again.
However, due to the symmetry about the zy-plane, the direction will switch.
If the vector was originally pointing forward before getting close to the xy-
plane, it will now be pointing backward, and vice-versa. Notice too when

is a multlple of 7, and so P is on the xy-plane, that while the So component

of VQQ switches sign due to the sin factor, the rest of VaQ is nonzero.
It is approximately constant in v since ¥ only occurs in cos) in the part of

an that is orthogonal to So.

It follows that the winding number of 7, Q on Zor, along the constant-
(8, ¢) circle is either 0, 1 or 2, depending on the directions of the half turns
at the two points where the circle intersects the xy-plane, provided that the
positive number ¢ is sufficiently small, and still assuming that v > 0. If
instead, » = 0 and g > 0, then an evident adjustment is required.

Finally, by symmetry, this claim can also be made concerning small
circles near C.

3. Additional Singularities in the xy-plane

N
As we will see, there is always at least one more singularity of v7,Q on Zor,
that lies in the zy-plane, and never more than two. Furthermore, each such
singularity corresponds to a local maximum of the function @ on Zor,. To
keep the formulas involved in this analysis as simple as possible, it will be
assumed in this section (only), without loss of generality, that there is a
positive number yg such that the coordinates of the points B and C' in the
xy-plane are (0,yo) and (0, —yo)-

We continue to assume that the triangle AABC is acute, and that
0 < a < ZA. The intersection of Tor, and the xy-plane consists of an arc
A connecting B and C on a circle € whose center X has coordinates (zg, 0)
such that zy > 0, together with the reflection of this arc about the y-axis.
Denote the reflections of A and € by A’ and €', respectively. The radius of
€, and of €’ will be denoted by ro = /2% + y2. Notice that since o < ZA,
the arc A is the longer of the two arcs on C joining B and C.

The coordinates of A will just be denoted (x1,y1), which are only re-
stricted by above two requirements. The requirement that o < ZA means
that A must be inside the union A u A’. The requirement that AABC is
acute means that |y;| < yo < r1, where r1 = /2% + y?, as is straighforward
to check.
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A (arcof C)

F1GURE 4. The z; > 0 case of the xy-plane analysis

N

We will actually limit our focus in the section to singularities of 57, Q on
the arc A, and basically ignore A’, even though singularities on the latter arc
are also significant. By symmetry, studing the singularities on A’ is equivalent
to negating 1, and then focusing on the original arc A. As we will discover,
the situation concerning the singularities on A is quite different depending
on whether x; is positive or negative. See Figures 4 and 5.

The points on the arc A will be parameterized via an angle 6 with
|0] < 09 with 6y = m — «. Specifically, the coordinates of such a point P will
be (zp + 79 cos 8, rgsin ). Notice that (zg — ¢ cos by, 1o sinby) = (0, tyo),
the coordinates of B and C. Tor,, is generated be rotating A about the y-axis.
Letting ¢ denote (in this section) the angle of rotation about the y-axis, the
points on Zor,, other than B and C, can be coordinatized via the pair (0, ),
with 0| < 6y and —7 < ¢ < 7. The next claim is readily checked.

Lemma 3.1. A point on Tor, corresponding to values for 8 and ¢ has Carte-
sian coordinates (x,y,z) = ((zo+rocosf) costp, rosinf, (xo+rgcosd)sin ).
Moreover,

st = (@—n1)?+@y—wm)?+2°

12 + 13 + 22 + 2rozo cos O — 2rgy; sin @ — 2x1(wg + 79 cos ) cos

22+ (y Fyo)? + 22 = 2rg(rg + w0 cos O F yo sin 6)

2
52,3

Now recall and apply the Law of Cosine formulas for cos 8 and cos~y
in Lemma 2.1. Using the coordinates system (6, 1), observe that ¢ cos 3 /0y
and 0 cos~y /0y are both zero when ¢ = 0 or 1) = 7 (or any multiple of =),

«—>
i.e. when the point is on the xy-plane. The line AB intersects the circle €
in a unique point D (other than the point B), whose coordinates are (z¢ +

19 cos ., sin 6.,) for some 6, with |6,| < w. Likewise, the line AC intersects
the circle € in a unique pointE (other than the point C'), whose coordinates
are (xo + 1o cos g, rosinfg) for some g with |05| < 7.
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D =
— A (arcof ()

A'(arcof C") C‘“\,

F1GURE 5. The z1 < 0 case of the xy-plane analysis

It is worthwhile to record some equations that corresponds to special
possible positions of the point A. Here X denotes the center of the circle
G, and X’ denotes the center of the circle €’. The claims made here are
straightforward to check.

Lemma 3.2.

«—>
Toyo — Toyr —yor1 = 0 iff A is on the line XB
ZToYo — Toy1 + yor1 = 0 iff A is on the line X'B
Toyo + Toyr —yoxr1 = 0 iff A is on the line XC

iff A is on the line X'C

{ ToYo + Toy1 + Yor1 = 0
y2 +wor1 —yoy1r = 0 iff A is on the tangent line for C at B
vt —xor1 —yoyr = 0 iff A is on the tangent line for C' at B
y2 +wor1 +yoyr = 0 iff A is on the tangent line for C at C
vt —xox1 +yoyr = 0 iff A is on the tangent line for €' at C

A couple useful facts concerning the signs of various quantities are as
follows.

Lemma 3.3.
. . . 2
sign(fp — [05]) = sign(z1) sign(yg + zox1 + yoy1) and
sign(fp — |04|) = sign(z1) sign(yg + zox1 — You1)-

>
Proof. For now, assume that the line AC is not tangent to the circle C at

the point C. Whether AC intersects € at a point (other than C) that is on
the arc A or at a point on the other/shorter arc of € connecting B and C,
depends on the sign of z; and on whether A is above or below the tangent
line to € at C. This latter condition depends on the sign of y2 + o1 + Yoy1 -
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Of course, the sign of 6y — |0g| depends on whether the intersection point is
on A or on the other arc. A quick geometric inspection of all four cases makes
the first claim clear. The second claim is similarly establed.

Definition 3.4. Define the following quantities:

((Fs = xoyi + woyi — xoxi — 2y521 + 2(z0 — 1) Yoy
Gs = =y —woui +vor? — 2y5y1 — 2xoz1 (Yo + 1)
Hg = ro(ys +ri+2y0y1)

) Ey, = xoys +zoyi — xoxt — 2yd1 + 2(x1 — xo)youn
Gy = y§+yoyi —yori — 2y3y1 + 2x0x1 (Yo — Y1)
Hy, = 1o(yg+17— 2y0y1)

Definition 3.5. Define the following functions of the angle 6:

pg(0) = zoyo — yox1 + Toy1 + ro(Yo + y1) cos b — roxq sin
p4(0) = —zoyo + Yor1 + Toy1 + To(y1 — Yo) cosf — rox1 sind

The next couple lemmas follow directly from the above definitions and
lemmas.

Lemma 3.6.
(20 cos By + yo sin By + 79) (g cos Oy — yosinby +19) = (wo + 7o cosh)?
ps(0)% = (xgcosby + yosinby + ro)(Fscos + Ggcosd + Hg)
py(0)? = (zgcosby — yosinby + ro)(Fycosf + G, cos + H.,)

Lemma 3.7. The derivatives of the functions pg(0) and p,(0) have the fol-
lowing properties.

[ p5(0) = —ro(yo +y1)sind — rozgcosd
ps(—to) = Y5 + Tox1 + Yoy
ps(0p) = —ro(y5 + zow1 + yoy1) (Y5 + 1 + 2y0y1) / Hp
sign(pf3(—0o)) = —sign(p}3(0s)) = sign(yg + zow1 + Yoy1)

P, (0) = 7ro(yo — y1)siné — roxq cos

P, (0o) = Y5 + Tox1 — Yoy1

P, (05) = —ro(yg + zox1 — yoyr) (W5 + 17 — 2yoy1) / Hy
sign(pf, (6o)) = —sign(p’,(0,)) = sign(yg + zox1 — Yoy1)
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The sines and cosines of 0y, 6z and 0, can be expressed as follows.

Lemma 3.8.

cosby = —xo/ro, sinby = yo/ro
6089[3 = —Fg/Hﬁ,Sineﬁ = —GB/HB
cosf, = —F,/H, and sinf, = —G,/H, .

Proof. The first two equations are immediate. (Note that 7/2 < 6y < 7.) The

equation of AB is (y1 —o)z = z1(y—1%0). The equation of € is (z—x¢)%+y? =
r3. Eliminating y, and solving for z yields x = 0 or x = 221 (71 — Yoy1 +
v2) / (& +r? — 2yoy1). Using the latter, it can be seen that the desired point
(z,y) is such that (z — zo,y) = ro (-F,/H,,—G/H,). The formulas for 6,
in the lemma now follow. The formulas for 5 can be similarly proved.

a

Three sinusoidal functions of interest are as follows.
Lemma 3.9.

zocosh + yosinb +rg = 27 sin’ %

Fscos+ Ggsin + Hy = 2Hgsin® @

F, cosf + G, sind + H, = 2H, sin> 2.

Proof. By Lemma 3.8, (—Fg/Hg)cosl + (—Gg/Hg)sind = cosbscosf +
sinfgsin® = cos(d — 03). So, sin’[(6 — 05)/2] = [1 — cos(§ — 05)]/2 =
(Fgcos + Ggsinf + Hg) /(2Hg). This proves the equation that involves
B. The other equations can be proved in a similar manner.

a
The following formulas for pz(¢) and p,(#), and their signs, are also useful.
Lemma 3.10.

sign(ps(6)) = sign(x1)sign(fo — 03) sign(fy + ) sign(6z — 6)

and

sign(p(0)) = sign(x1)sign(fp — 0.,) sign(—6p + 0) sign(6, — ).

Proof. From Lemmas 3.6 and 3.9, we see that pg(6) = 0 if and only if § = —6,
or 6 = fg. From Definition 3.5, pg(#) is a smooth function, and we see that

pa(0) = 2eg+/roHp sine—geo sin9_296 and

p(0) = 2e4+/T0H, sine;aO Sin9—297,
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where €3,¢, € {—1, 1} are constants. pg(#) changes sign when 6 is —6, or 63,
and nowhere else. pb(—&o) = y2 +x0x1 +Yoy1, whose sign is sign () sign(fy —
|63]), by Lemmas 3.3 and 3.7. It follows that sign(pg(8)) = sign(z1) sign(6p —
|63]) - sign(6s +6o) sign(6o + 8) sign(fs — 8) = sign(z1) sign(fy —63) sign(6o +
03) - sign(fs + o) sign(fo + 0) sign(g — 0) = sign(x;) sign(dy — 0s) sign(fy +
0) sign(0z — 6). Similarly for sign(p-(6)).

Lemma 3.11.

pa(0) = 2sign(zq)sign(fs — 6y) \/roHps sin o —;90 sin o _20’6
and
p(0) = 2sign(x)sign(6y + o) v/roH sin 0 _290 sin 0 _29A’

Proof. Again, pg(6) = 0 if and only if § = —6 or § = 0. Similarly, p,(#) = 0
if and only if 8 = 6y or 6 = 6,. From Definition 3.5, pg(d) and p,(#) are
smooth functions. From this and from Lemmas 3.6 and 3.9, we see that

pg(0) = 2eg+/roHp SmH—;HO sine_zeﬂ and

py(0) = 2e4+/roH, sine_ze0 Sin9—297,

We also see that sign(sin[(0+6)/2]) = sign(f+6o), and sign(sin[(6 —
03)/2]) = sign(fd — ). So, using Lemma 3.10, eg = sign(ay)sign(fy —
03) sign(y + 0) sign(6g — 0) - sign(f + 6y) sign( — 65) = sign(z1)sign(fs —
0o). Thus we obtain the first equation in the lemma. The second is proved
similarly.

We will now focus our attention on studying the following functions of
0 to gain a better understanding of how @ varies as a function of § when
1 = 0, i.e. when the point P is on C.
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Definition 3.12.

F) Fl s2452—b2
ZD/;(Q) = %Lp:o COSB = %LZJ:O —1251353
i Kl s24s2—c?
D,0) = gl,_gcosr = 5l ek
0
| 20 = Zl,,@ = #Ds) +rD,0)
8s(0) = sign(xy)sign(0s — 0o) /Y2 + 77 + 2y0y1 sin[%(ﬁ —03)]
$,(6) = —sign(w)sign(6o +6,) /43 + 17 — 2yoy1 sin[5(6 — 6,)]

S(0) = uSs(0) +v8,(0)

Lemma 3.13.

sign(pp(0)) (Y3 — 1 + 2wow1) A/Fzcos0 + Ggsind + Hg

Ds(0) =
s 24/2r¢ 5 ’
and
D.(6) = sign(ps(0)) (y§ — i + 2xow1) A/Fy cos0 + G sinf + H,
L(0) =

24/2r¢ s3

Proof. Calculations involving substitutions suggested by Lemma 3.1 lead di-
rectly to this: Dg(0) = { [ —4zoro sin 6+ 2(yo—y1)ro cosd+2x17r¢sinbd cos |
(25183) — (82 +53—b%) [ (s3/51) (=2m070 Sin @ —2y1 70 COS O+ 27170 Sin  cos ) +
(s1/53)(=2x0r0 sin @ + 2yoro cos 0] } / (4s7s3), evaluated at ¢ = 0. Using Defi-
nition 3.5 and Lemma 3.6, this expands and then factors to produce (y2 —r% +
2z021) [ (xo cosO+yosinb+7o) pa(0)] / [ 2/2r0 (20 cos 0 +yo sin 0+70)%? %]
= sign(pp(0)) (Y3 —ri +2woz1) o/Facos0 + Ggcosd + Hg | [24/2r¢ 53 ]. Sim-
ilarly for D, (0). o

The next formulas can be checked directly by applying the half-angle
formula for sines.

Lemma 3.14.

Gy fo=fs _ siEn(B=6,)[r]
2 r2+yg+2yoy

G P00y siEn(0+0) jm]
2 ri+yg—2yoy1

gin %otbs  _  sign@ot0p) ly3+eozi+you]

{ 2 TO\/T%JFZJ(Q)Jr?yoyl

sin Oo—0y _ sign(fo—0-) [y2 +zoz1—yoy1|
2 roA/T3 Y2 2011

Sin M — Sign(eﬂ_e'y) Yo |7'f—y8—21’07;1\
2 TO\/Tf+y§+2y0y1\/r§+yg—2yoy1 .
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We will now discover particularly simple formulas for Dg(6), D~ (6) and
D(H), provided we restrict 6 to have absolute value less than 6.

Lemma 3.15. When |0] < 6y, we have

Dp0) = (y5—ri+2z0m1) 85(0) / (259)
Dy(0) = (5 —ri+2z0x1) 8,(0) / (257)
DEO) = (y5—ri+2w0m1) 8(0) / (257)

Proof. Beginning with Lemma 3.13, and applying Definition 3.4 and Lemmas
3.9 and 3.10, D () = sign(pp(0))(yg —ri +2x021)/Fp cos0 + Ggcos0 + Hg
/ [24/2r0 53] = sign(ar) sign(d — 05) sign(f + 0) sign(8 — 0) /2y (43 —
r? + 2wox1) | sin[(0 — 05)/2]| / (24/270 s7) = sign(z1) sign(s — 6) sign(fp +
0) \/yg + 1% + 2yoy1 (¢ — % + 2x0x1) sin[(0 — 05)/2] / (2s}). But, sign(fy +
0) = 1 since we are assuming that |0] < 6. This establishes the formula
for Dg(f). Similarly for D,(#). From these, the formula for D(8) follows
immediately.

o

The next formulas are direct consequences of Definition 3.12 and Lemma
3.14.

Lemma 3.16.

2 p—
86(‘90) = —21, 87(90) = - +m0f3 4ot

2
8(—b0) = 21, S5(—p) = LT LTt Yot

1 sign (0, + o) sign (05 — 6-) yo(yd — ri + 2z071)
85(03) =0, 8,(03) = al 2
5(0p) +(05) ToA/Y3 + 73 + 2you1

_ _ sign (05 — o) sign (0, — 03) yo(yd — ri + 2xox
8,(6y) =0, 85(6,) = (O )m\/;glrfﬁ—)QyO(yf 1+ 20m)

With 0] < 0o, we see that D(0) = 0 if and only if $(9) = 0. Also, $(0) is a
sinusoidal function of period 4w that satisfies $(6 + 2w) = —8(0).

Lemma 3.17. There is at most one value of 6 with |0] < 6y for which §(8) =0
and hence D(0) = 0.

Proof. In fact, there cannot be more than one value of 6 with |§] < 7 for
which §(0) = 0. If there were, then there would also be more than one value
of @ with 7 < 6 < 3x for which 8(8) = 0, because 8§(0 + 27) = —8(0). This
would mean at least four values of 6 with —m < 6 < 37 for which 8§(0) = 0.
This means a sinusoidal function of period 47 (i.e a function of the form
sin[(0 — 6p)/2] + k) is zero at least four times over a single cycle, which is not
possible.

[m]
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Lemma 3.18. sign(yZ — r{ + 2xoz1) = sign(x1). Therefore, if |0] < 6y, then
sign[D(0)] = sign(z) sign[S(9)].

Proof. We continue to assume that o < ZA < 7/2. Notice that y3 — r? +
2x071 = 13 — (v1 — 20)? — y}. The sign of this is +1 if the point A is inside
the circle €, but -1 if A is outside €. When z; > 0, we require that A be
inside € because of the constraint a < ZA. When z; < 0, it is necessary for
A to be outside € (though it is inside €’) because of the constraint ZA < /2,
which means that A must be outside the circle that has the segment BC as
a diameter. The rest follows from Lemma 3.15.

Lemma 3.19. Assume that x1 < 0. Then,
8(—bp) >0 = 8(0y) >0 and D(—6y) <0 = D(hy) < 0.

The equation 8() = 0 has at most one solution 0 = 0 such that |0] < 6.
If 8(—60) > 0 and 8(6p) < 0, then there is exactly one such root. If instead,
8(—bp) < 0 and 8(0y) < 0, then there are no such roots.

If 6 exists and |0g| < 6o, then 5 < 6. If O exists and |0,| < 6o, then
0 <06,. If 0 exists, |05 < 6 and |6.,| < by, then —0y < 05 < 6 < 0., < bg.

Proof. Assume the contrary of the first implication. That is, assume that it is
possible to have 8(—6p) > 0, but 8(6p) < 0. From Lemma 3.16, sign[ S(—6p) ]
= sign[ (y3 + zox1 + Yoy1) 1t + Tox1 v ] and sign[8(6y)] = —sign[roxy p +
(Y2 + zom1 — yoy1) v]. Also, by Lemma 3.18, the signs of §(¢) and D(6) are
opposite.

Since we are assuming that §(—6p) > 0, we must have (y3 + xoz1 +
Yoy1) b > —roryv. Since we are assuming that 8(fy) < 0, we must have
(y5 +wow1 —yoy1) v = —rox1 pr. Now, (Y§ + o1 + yoy1)(y5 + ToT1 — Yoy1) —
r3y? = y3(y3 — r} + 2zox1 < 0. This yields a contradiction. The second
implication follows from Lemmas 3.18.

By Lemma 3.17, there can be at most one roots between —6, and 6.
Now, 8§(#) must have an even number of roots between —8y and 6y if S(—0y)
and 8(fp) have the same sign, and hence cannot have any roots at all in
this range. However, if the signs are different, then there must have an odd
number of roots, and hence a unique root. The remaining claims follow from
these facts.

Lemma 3.20. Assume that x1 > 0. Then,
8(—00) >0 s 8(00) <0 s D(—eo) > 0 and 'D(@o) < 0.

The equation D(f) = 0 has exactly one solution 0 = 0 such that |0 < 6.
Here —0p < 0, <0 <03 < 0.
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Proof. Since, |y1] < yo, we have y2 + xox1 £ yoy1 > 0. Thus, §(—6p) > 0 and
8(6p) < 0. The rest follows from Lemmas 3.15 through 3.18, using the same
reasoning as in the proof of Lemma 3.19.

o

This concludes the analysis of the variation of @ = pcosf + vsinvy
along the arc A, as a function of 8. We next consider how varying ¢ at such
points, and so moving these points vertically, affects @Q). Recall that the first
derivatives of ) with respect to 1 vanishes at points on A. We consider the
second derivatives now.

Definition 3.21. Define the following;:

A2 2 2
€5(0) = Zly=o cos B, €(0) = Fpzly=o cosy, €(0) = Lz ly=0 Q
wg = arctan(z1,yo +y1) , wy = arctan(xi, —yo + Y1)

3 — ToT1 + Yoyu 7 — Tox1 — Yoy
roA/T? + Y2 + 2yoy1 roA/T2 + Y2 — 2y0u1

Ts(0) = Tom [Cos Awg — cos(d — w5)]
rov/T1 + yg — 2yoyr [ cos Aw, — cos(6 —w-) | .

Note that we are using the two-parameter arctan function here, the conse-
quence of which is that

! Awg = arccos Aw, = arccos

e
—~~
>
~
Il

X1 Yo + Y1
Yo + 11+ 290 Yo + 77 + 2yoy1

T . —Yo + 1

COSWr = —F/—77—7————rrr-or-—o SINW, = —F/——FF——=sr——
TN+ =2y T YR+ —2yom

The significance of the omega angles is given be the next lemma, which is
straightforward to check.

Coswpg = , SIlwg =

Lemma 3.22. The signed angle (between —m and ) subtended at C (B) be-

tween the ray from C (B) parallel to the positive x-axis and the ray CA (BA)
equals wg (wy). Thus, when 1 < 0, wg = 7/2 + £LC and w, = 7/2 + LB.
But, when 1 >0, wg = 7/2 - LC and wy = /2 — LB.

The next lemma is clear from the definitions.
Lemma 3.23.
Ts(0)=0 < O=wsgtAwsg and T,(0)=0 < 0=w,+Aw,.

The next couple lemmas also follow directly from the definitions, but
require some effort.
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Lemma 3.24.

( Ts(0) = r{ — zox1 + yoy1 — rox1 cos O — ro(yo + y1) siné
T,(0) = r? — 2ox1 — Yoy1 — rox1 cos O + 1o(y1 — yo) sin O
€5(0) = Sign("g%""”l sin -0 74 (9)

< .
&, (0) = Si&n (02?— D21 i Q040 3 (9)

sign[€4(0)] = sign(z1) sign[T5(0)]
sign[€,(0)] = sign(xy) sign[T,(0)] .

\

Lemma 3.25.
(g — _  Toyot+Zoyi+Ziyo
sin(fy — wg) =
04/ 71 TYpT4Yoy1

A 0 Tf—yg

COS Awg — COos(wp — = —
s (ws —60) roA/T2+y2+2yoy1
/T2 HyE+2y0m

0

{ cosAwg —cos(wg +6y) =

2_y22z01;

cos Awg — cos(wg — 0 = O Y% =%om
s (wg —0s) ro4/ T3 +y—2yoy1

(ri—u3)(r} —yg—2xoz1)
ro(r? +y3+2yoy1)/T3 +y2 — 25011

cos Awg — cos(wg —0,) =

Lemma 3.26. The intersection point of the tangent line of the circle C at B,

and the line CX' (X' being the center of the circle C') is on the circle that
has BC as a diameter.

Proof. By Lemma 3.2, the intersection point is found by solving the system

Y3 + zox — yoy = 0
ToyYo + Toy + yor = 0.

We get (z,y) = (—2xoy2 / (23 +42) , yo(y2 — 22) / (3 +43)). The distance of
this point from the origin is just yo. Thus this point is on the circle that has
BC' as a diameter.

Direct computations reveal the following.
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Lemma 3.27.
( Ts(b0) =73 —yd ., Ty(0o) =i + ¥ — 2yotn
To(=00) =71 — 5 » Ts(=bo) = 71 + ¥ + 2y01

2 02Y(r2 _ 02 — Yrox )
1 T5(05) =72 —y2 —2 T (0,) = (r1 —yo) (r1 — ¥o 0%1
5(0p) =1 —y5 — 2wow1 , T,(0p) 17T 2500

2 2\/..2 2

— — Y5 — 2Tox1)

T (0.) = 12 2_9 Ta(0 _ (ri—y)(ri — w0 0Z1
4(04) =11 — Y5 zoz1 , Tp(0y) = w2 + 2 — 250u1

\

The following claims are immediately evident from Lemma 3.24.

Lemma 3.28. The function T(0) is sinusoidal of period 2w, and as such, it
has two roots over the interval (—m,w]. Furthermore, if —m < { <n <, and
if T(¢) and T(n) are both nonzero and have the same sign, then the interval
[¢,n] either contains both or neither of the two roots.

Here is another useful lemma, one whose proof appears to be a bit tricky.

Lemma 3.29. When x1 > 0,
O<wg—0,<m and 0<0g—w,<m.

Proof. To prove that 0 < wg — 6, < m, we will consider both 6z and 6, and
their corresponding points D and F on C. See Figure 4. Because of the fact
that ZC' is acute, the angle 0 is constrained to be between —fy and 7 — 0,.
Consider two cases: when 0y —7m < 0, < m— 0, and when —0y < 6., < 6y —.
Let’s examine the first case. Fixing 0, and D, the angle wg is clearly greater
that it would be if we allowed A to be on the circle C, that is, if we allowed
A to equal D. For a moment, suppose that A = D. Now consider varying
0, and D, with 0y — ™ < 0, < 7 — 0y, we observe two facts. If 6, < 0, then
certainly wg > 6, since wg > 0. But if 6, > 0, then tan, < tanwg because
of the relative positions of C, X and D, specifically the fact that D is under
XC, which is positively sloped. The angles wg and 6, have absolute values
less that 7/2, and so, 0 < wg — 6, < 7, in the first case.

Now examine the second case, which, again is when —f0y < 0, < 0y — .
Thus, D lies on the lower half of the €. Clearly wg — 6, > 0 since wg > 0
and 6, < 0. We must however still show that wg — 0, < 7. With 0, and

D fixed, we will consider sliding the point A along the line BD. Begin with

A being the point of intersection of BD and the circle that has BC as a
diameter. The points A, B and D are respectively (z1,41), (0,%0) and (xo +
>

ro cos g, rocosfg). Thus, A being on AC requires that x1(rgsinf, — yo) =
(y1—yo)(ro cos B, +x0). In addition, A is on the circle with diameter BD if and
only if r1 = yo. It can be checked that if A satisfies both of these conditions,
then 1 = [ro + a0 + (o — ro)t?y][yg —2royoty + ygt?y] / {ro(1 +t,2y)[ro + 0 —
2yoty + (ro — zo)t2]} and yo + y1 = [ro + zo + (zo — r0)2P yo / {ro(1 +
t2)[ro + 20 — 2yoty + (ro —x0)t2] }, where ¢, = tan(6,/2) = sin 6, /(1+cos6,).



Angular Properties of a Tetrahedron with an Acute Triangular Base 23

«—>
The slope of AC in this case is tanwg = (yo +v1)/21 = [ro +To + (z0 —10)t*]

/ [yo — 2rot + yot?]. The slope of XD is tan 6., = 2t/(1 — t?).

Since wg = m/2 — LC < 7/2, we get wg — 6, < m when 0, > —7/2.
Assume now instead that —m < —0y < 6, < —7/2. Now, (yo+y1)/x1—2t/(1—
t?) = (1 +t2)[ro +zo — 2yot + (ro — x0)t?] / {(1—1t)[yo — 270t +yot*]}. This is
negative, by the following reasoning: ro + xg — 2yot + (1o — 20)t?> > 0 because
Yo+y1 > 0 (because |y1| < yo), yo—2rot+yot* = 2(yo—rosinb,)/(1+cosb.) >
0, and (1 +t?)/(1 — t?) = secf., < 0. Thus tanwg < tan6., = tan(w + 6,).
Since wg and 7 + 0, both lie between 0 and m, it follows that wg < 7 + 0,
sowg — 0, <.

This accounts for the case when A lies on the intersection of t}&line
BD and the circle with diameter BD. Consider relocating A along BD. It
cannot be slid higher up since that would put it inside the circle, which is
prohibited by the requirement that ZA be acute. If we instead instead slide

it down BD, then wg will decrease, but of course, 6., is unchanged. Thus the
inequality wg — 6, < 7 is maintained. This proves that 0 < wg — 0, < 7 in
either case. Symmetric reasoning establishes that 0 < g —w, < 7.

a

The previous lemma can now be applied to prove the next lemma.

Lemma 3.30. If z1 > 0, then T(0) is (strictly) positive throughout the interval
10+, 05]-

Proof. From Lemmas 3.18 and 3.25, cos Awg < cos(wg — 6). Using Lemma
3.29, we can then deduce that Awg > wg — 0, and, since wg > 0 and
Awg < m, we see that —7 < wg — Awg < 6. Thus, the function T(#) has
a root in the interval (—m, 7] that is not in the interval [6,,63]. By Lemma
3.27, T7(63) > 0 and T(6,) > 0. By Lemma 3.28, the interval [6,, 03] cannot
contain any roots of J(6), and so T(0) must instead be positive throughout
this interval.

The inequalities in Lemma 3.29 still hold when x; < 0.
Lemma 3.31. When 1 <0,0<wg—6, <7 and 0 <03 —w, <.

Proof. See Figure 5. Since ZB is acute, the angle 6, is restricted to be be-
tween m — 0y and 6y, which are both positive. This corresponds to a point D
on the upper half circle € whose coordinates are (x4 ro cos 6,79 sin6. ). By

the definition of 6., the point D is also on the line AB. Also on the upper
half of € is a point P such that the tangent line to C at P is parallel to

the line (B_é Clearly P lies along the subarc of A (in the upper half plane)
connecting B and D.

Let 0p be the angle between 6, and 6 such that P has coordinates
(2o + 19 cosfp,mosinfp). Let M be the midpoint of the segment BC. It is
now straightforward to check that —0p = ZMXP = LZCBA = /ZB. (Again,
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X denotes the center of €.) To see that ZM X P = LCBA, apply a 90-degree
rotation. So, 0p =1 — 4B > 6. So, wg — 0, > (1/2 + LC) + (LB —7) =
LB+ /C—7m/2=m/2—-LA>0. Also, wg — 0, <wg =7/2+ LC < .
This proves that 0 < wg —6, < 7. Symmetric reasoning establishes that
0<bs—w, <m.
a

We are now prepared to show claims about the sign of T(6) over intervals
of interest.

Lemma 3.32. Assume that x1 < 0.

([ Case 1. |05 <0y A 10, < by =

T(8) is (strictly) positive throughout the interval [03, 0.];
Case 2. |0g] <0y A |0, >0p =

T(0) is (strictly) positive throughout the interval [0, 60];
Case 8. |0g] >0y A0, <Oy =

T(0) is (strictly) positive throughout the interval [—0o, 6~ ];
Case 4. |0g] >0y A |0, >0y =

T(0) is (strictly) positive throughout the interval [—6p, 0]

Proof. First, consider Case 1 and assume its hypothosis. From Lemma 3.25,
cos Awg > cos(wg —6,). Using Lemma 3.31, we can then deduce that Awg <
wg — 0, and, since wg < 7 and Awg > 0, we see that 6, < wg — Awg < 7.
Thus, the function T5(f) has a root in the interval (—m, 7] that is not in the
interval [03,6,]. By Lemma 3.27, T5(63) > 0 and T3(6,) > 0. By Lemma
3.28, the interval [63,6,] cannot contain any roots of Tz(#), and so Tg(0)
must instead be positive throughout this interval. By symmetry, T, (#) must
instead be positive throughout this interval. Therefore, T(#) must instead be
positive throughout this interval.

Next, consider Case 2 and assume its hypothosis. From Lemma 3.25,
cos Awg > cos(wg — bp). Since 7/2 < wg < 7w and 7/2 < y < W, we get
0 < wg — b6y < 7/2. It follows that Awg < wg — bp. Since wg < 7 and
Awg > 0, we see that 6y < wg — Awg < m. Thus, the function Tz(#) has
a root in the interval (—m, 7] that is not in the interval [03, 6y]. By Lemma
3.27, T3(05) > 0 and T3(6p) > 0. By Lemma 3.28, the interval [0, 6y] cannot
contain any roots of Tg(6), and so Tg(f) must instead be positive throughout
this interval.

Also from Lemma 3.25, cos Awy > cos(fg —w,). By Lemma 3.31, we get
Awy < 03 —w,. Since —1/2 < w., and Aw, > 0, we get —7 < wy +Aw, < 3.
Thus, the function 7, (6) has a root in the interval (—m, 7] that is not in the
interval [63,60]. By Lemma 3.27, T,(03) > 0 and T,(6y) > 0. By Lemma
3.28, the interval [#g,0y] cannot contain any roots of T,(6), and so T.,(6)
must instead be positive throughout this interval. Since, T3(0) is also positive
throughout this interval, we find that T(6) must also be positive throughout
this interval.
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Case 3 can be handled by a symmetric argument based on Case 2. Case
4 follows in a manner that is similar to the previous cases.
a

At last, we arrive at the principal goal of this section, namely, stating
and proving the following result.

Theorem 3.33. Apart from the apexes B and C of the toroid Tor,,, the quantity
Q = pcosf +vsiny (for fized p,v > 0) has either one or two critical points
on ‘Tor,, that also lie in the xy-plane. At these points, Q has a local mazimum
value.

Proof. The intersection of Zor, and the zy-plane consists of two circular
arcs, as discuessed earlier. Without loss of generality, we may assume that
A has coordinates (z1,y1) with 21 > 0. Along the right arc A (part of C)
there is exactly one value 6 with || < 6, and 8$(f) = 0, and so D(f) = 0
too. At the corresponding point (xg + 7¢ cos 0, 7o sin é), the quantity @ has
a critical value on Tor,. Here, D(f) is decreasing, D'(d) < 0 and £(F) < 0.
Direct computation reveals that when 1 is a multiple of 7, 02Q/dd6 = 0.
Consequently, at the critical point, the Hessian determinant of () with respect
to # and v equals

D) 0 S os

‘ 0 &) ‘

It follows that @ has a relative maximum value at this point, on Zor,,.

The left arc A" (part of C’) can be analyzed by first reflecting the zy-
plane about the y-axis. This means we are now assuming that z; < 0 and are
examining the right arc A again. By the foregoing analysis, the situation is
the same as before except that there might not be a value of ¢ with |0] < 6,
and 8(0) = 0. If there is, then it is unique, and also corresponds to a relative
maximum for Q) on Zor,, by the same reasoning as before. There can be no
other critical points for Q) on Tor, in the zy-plane, other than the apexes of
the toroid.

4. Additional Singularities not in the ry-plane

Our focus now shifts to the upper half of the toroid Zor,, that is, the points
where z > 0. Remember that both Zor, and the scalar field @ = pcosf +
vcosy on it are symmetric under reflection about the zy-plane (z — —z).

5
We will see that surface gradient v/,Q (defined in (1.1)), on the upper half
of Tor,, can have at most one singularity, and if it exists, this point cannot
correspond to a relative extreme for () on Zor,.

In this section, it will prove helpful to use a different coordinate system
than the one used in the provious sectiom, though we continue to assume that
the triangle AABC lies in the xy-plane. However, without loss of generality,
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we will now assume that all of its vertices lie on the unit circle in the zy-plane.
Moreover, letting (x;,y;) = (cosf;,sin6;) (j = 1,2, 3) denote the coordinates
of A, B and C, respectively, we will further assume that 61 4+ 0 + 63 = 0. By
simply scaling, translating and/or rotating the coordinate system previously
used, we can easy obtain a coordinate system of this sort. It will also be helpful
to set t; = tan(6;/2) (j = 1,2,3), and to notice that cos0; = (1—17)/(1+3),
sinf; = 2t;/(1+13) and titaty = t1 + to + t3.

Now, in order for VQQ to vanish at a point on Zor,, it is necessary and

buPﬁ(:lent that V cos a X vQ = 0 at that point. This means that v cos « and
Q are linearly dependent. We will now study the equation

Asycosa+p sycosf+v sycosy =0, (4.1)

usually treating A\, p and v all as variables. Later, we will pause to remember
that we are ultimately interested in whether or not a suitable value of A exists
for given values of y and v. Equation (4.1) can be rewritten as follows.

Lemma 4.1.

0 s3—s3—a® 52—s§—a2
2
) ) ) 25583 ) 252283
[\ pv] w 0 w =[000]. (42
23]253 25153
S5 —81] —C s?2—s3—c2 0

23%52 25153

Proof. The following can be checked directly using the definitions in Section
2.

0 s§—52§—a2 55—33—(12
25353 25233 §1
A 52 —s2—b2 0 s —s2— b2 ~ _8
(A pv] 95250 72 5 59 = 0.
153 5183 ~
s2—s7—c2 s2—s2—c2 0 83

23532 23133
Since the vectors §1, §3 and §3 are linearly independent, (4.2) follows.
a
The next result is interesting and identifies clearly where nontrivial so-
lutions to (4.1) are possible.
Lemma 4.2. The determinant of the 3 x 3 matriz in (4.2) is

64(t1 — t2)*(ta — t3)%(ts — t1)?
452s2s3(1 +t3)(1 + t3)(1 + ¢3)

(2% +y* = 1).

Consequently, a solution to (4.1) (or (4.2)) is only possible at points on the
cylinder defined by

2 +y? =1
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Proof. Direct computation reveals that the discriminant equals [a?(s7—s3)(s7—
$3)+b2(s5—53)(s3—s7)+c%(s3—57)(s3—s3)]/[4s3s353]. This can be expanded
in terms of x, y, z, z; and y; (j = 1,2,3), and then expanded further in
terms of t; (j = 1,2,3). The above formula results from simplifying this. o

Generally, each point on the cylinder 22 4+ y?> = 1 admits a unique
homogeneous triple (A : p : v) that satifies (4.1) (and (4.2)) at that point.
In this way, it is useful to consider the function on the cylinder that assigns
this homogeneous triple. We will also define p = v/u and treat this too as
a function defines on the cylinder, a function that is allowed to have oo as a
value, so it is a function whose codomain is the real projective line.

In order to unltimately resolve the issue of singularities of 7@ on
TJor, it will prove useful to ignore these for a while, and instead focus on two
functions defined on upper half of the cylinder 2 +y? = 1, where z > 0. Let
us denote this half cylinder by H. The functions of interest on H are p and
cos a. Letting the coordinates of a points on H be (x,y, z) = (cosf,sinb, z),
it will also be handy to set ¢t = tan(6/2), so that cos = (1 —t?)/(1 +t?) and
sinf = 2t/(1 + t2).

Lemma 4.3. At a point H, we have (A : p:v) =

( (T +tat) /[(ta — ta)/1 + t33/4(t — + (1 +8)(1+12)22] :
(1 +tat) /[(ts — t1)A/1 + 34/4(t — t2)2 + (1 + £3)(1 + 12)22] :
(L4 tst) /[(t1 — t2)/1 + 33/A(t —t3)2 + (1 + 13)(1 + 12)22] ).
Thus, p =

VL83 (0 — ) (1 + t3t) VA — 12)% + (1 + 83) (1 + £2)22
A1+ (t = t2) (1 + tot) /At — t3)2 + (1 + £3) (1 + t2) 22

Proof. Equation 4.2 can be rewritten as follows:

1
5253 0 0 0 83CO0SQ — Sg 89 COSQ — S3
[Auprv] | O 53131 0 sz cos B — s1 0 s1c08 8 — s3
0 0 1 83 CO0S7Y — 81 81COS87Y — So 0

S1S2

= [0 0 0]. Setting A" = A/(s2s3), p' = p/(s3s1) and v/ = v/(s1s2), we
see that p'(szcos B — s1) + V/(sacosy — s1) = 0. So, p = (s2v/')/(s3p)) =
—[s2(s3cos B—s1)] /[s3(s2 cosy—s1)] = —[s2(s5—s7—b?)] / [s3(s3 —s1 —c?)].
This can be expanded to obtain the formula in the lemma.

o

The next formula is established by writing cos? « as (s3+s3—a?)?/(4s353),
and then expanding as before, and simplifying.
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Lemma 4.4.

cosa = [A(1 +tats)(t — ta)(t —t3) + (1 + 13) (1 + 13)(1 + t*)2%] / [\/1 + 3

-\/1 + 3 \/4(t — )2 4+ (1 +t3)(1 + t2)22 \/4(75 —t3)2 + (1 +t3)(1 + t2)22].

The quantities p? and cos? o can be treated as functions of ¢ and Z,
where Z = 22. As such, their partial derivatives are readily computed. Define:

% _—M and % —_M
dt p_ d(p?)/0Z dt a_ d(cos? ) /07"

These are the relative rates of change of Z and t along a curve of constant
p, and along a curve of constant «, respectively. The following facts can be
immediately verified.

Lemma 4.5.
dz

T =12+ DA+ B +B)1+ )27 — At — t2)(¢ — 1) (tats — 1)

(P =1)+2(ta+t3)1)]] / [2(1+%) (1 +tat) (1+t5t) [(t2+13) (= 1) +2(1—tats)t]]
‘fl—f = [8(1 + tot) (1 + tat)[(t2 + t3)(1 — t*) + 2(tats — 1] Z] / [(1 + £°)-
[(1L+63) (1 +5) (1 +%)2Z = 4(t — ta) (t — t3) ((tatz — 1)(t* = 1) +2(t2 +3)1)] | ,

dz
dt

az
dt

_ Az(Z+4)

d
o (1+ )2

An immediate consequence of the surprisingly simple last equation is
the following:

Lemma 4.6. A constant-a curve and a constant-p curve, on H, are never
tangent to each other at a point.

The next two lemmas follow by examining the numerators and denom-

inators of dZ/dt |, and dZ/dt |,.

Lemma 4.7. For each of t = —1/ta, t = —1/t3 and t = (1£+/1 + t2)/t1, there
is a vertical constant-p curve. Constant-o curves have horizontal tangent
lines at points where they cross these lines. Moreover, other constant-p curves
have no vertical tangent lines, and constant-a curves do not have horizontal
tangent lines at any other points.

Lemma 4.8. A constant-p curve has a horizontal tangent line, and a constant-
«a curve has a vertical tangent line at points of intersection of such curves with
the curve I' described by (1+t3)(1 +t3)(1+t2)2 Z = 4(t —t2)(t — t3) [ (tats —
1)(t2 — 1) + 2(t2 + t3) t], and nowhere else.
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The curve I' will actually not affect the situation we are ultimately
focused on because of the following fact.

Lemma 4.9. At any point on T, a > LA.

Proof. Assume this is false, and consider a point on I' where o < LA < /2.
Solving the equation in Lemma 4.8 for Z, and substituting this into the
formula for cos? a essentially given in Lemma 4.4, we obtain

4(t - t2)(t — tg)(l + t2t)(1 + tgt)
[(tg + t3)(t2 — 1) + 2(]. — tgtg)t]2 .

Now, cos? ZA = (b% +c® —a?)?/(2bc)? = (1 +tat3)? /[ (1 +t3)(1 +¢3) ]. From
these formulas, we obtain cos? o — cos? ZA =

(ta —t3)? [ (tats — 1)(t2 — 1) + 2(t2 + t3)t]?

1+ 3)(1+t3) [ (t2 +t3)(t2 — 1) + 2(1 — tat3) |2 <0

Hence cosa < cos ZA, since both angles are in the range from 0 to 7/2. We
conclude that o > ZA. This is so for any point on I'.

a

Only the portion Hy of H for which o < ZA will be of further interest.
This consists of all but a bounded portion of H near the zy-plane. The next
lemma is now automatic.

Lemma 4.10. On the curve I, Z varies as a function of t (or equivalently 0).
When Z = 0, this implies a unique value of z = 0, but when Z < 0, there is
no corresponding real value of z. Also, none of the curve I' on lies on Hy.

To better understand the constant-p curves and constant-a curves on
Ho, consider the next two lemmas. The first lemma is just obtained from
Lemma 4.3 by direct computation.

Lemma 4.11. Working on Ho and keeping t fized (so 0 fized), the limit as
z — 0 of p equals

(14 t3)(t2t3 — to — 2t3)(1 + t3t)

(1 +t2)(t3t3 — 2to — t3)(1 + tat) .

P = —

By inverting this, we see that any given value of py, corresponds to a unique
value of t equal to

(L 83)(tatd —ta — 2t3) + (L +#3)(t5t3 — 2t — t3) por
t5(1 +13) (t2t3 — to — 2t3) + to(1 + t3)(15t5 — 2t2 — t3) poy -
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Lemma 4.12. Apart from the vertical lines identified in Lemma 4.7, a constant-
p curve on Hy is such that Z varies monotonically as a smooth function of
t (or 0), defined over a certain interval of t (depending on the value of p).
A constant-a curve on Hy is such that Z wvaries as a smooth function of t
(or ) for all t € (—o0,00] (or 0 € (—m,7]). Moreover, constant-p curves and
constant-o curves are connected curves.

Proof. dZ/dt|, is never zero on Hp, and except on the special vertical lines,
it is smoothly defined and not infinite, so its sign does not change along a
constant-p curve. This establishes the monotonicity claim on a constant-p
curve. The fact that this curve is connected and unbounded follows from
Lemma 4.11.

Concerning a constant-« curve, notice that since a« < ZA, the inter-
section of Tor, and the zy-plane consists of two circular arcs, A and A’,
connecting B and C that together enclose the unit circle in the xy-plane.
Consider generating Jor, by revolving either of these arcs about the line

BC'. Tt is immediately clear that this will intersect 7y in a closed curve that
wraps one time around Hy. The claims concerning a constant-a curve follow
from this fact.

It is now straightforward to prove the next lemma.

Lemma 4.13. A constant-a curve on Hy does not contain two points that
have the same value of p.

Proof. Assume this is false, and let t;, < tg be such that the two point on
the curve corresponding to ¢t = t; and to t = tg have the same value of p.
By Lemma 4.11, there is a corresponding point on the curve for each ¢ in the
closed interval [tr,,tg], and p varies smoothly along this interval. By Rolle’s
Theorem, there exists some ¢ with 7, < < tg such that dp/dt |, = 0. At the
corresponding point on the constant-a curve, this curve must be tangent to
a constant-p curve, but Lemma 4.6 prohibits this, a contradiction.

a

We finally arrive at the main goal of this section, namely the establish-
ment of the next result. We return to considering fixed values of o, p and v.

Theorem 4.14. If a singular point for the vector field <7,Q on Tor, occurs
on the upper half of Tor,, (2 > 0, a < LA), then it is unique and occurs on
the intersection of Tor, and the half cylinder H. Moreover, it cannot be a
relative extremun point for Q

Therefore, the supremum value for @ on Tor, must occur either when
approaching B or C' from some direction, or at another relative extremum
point in the xy-plane. The infimum value for Q@ on Tor, must always occur
when approaching either B or C' from some direction.
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Proof. Such a smgular point only occurs When Vcosa X VQ = (0. This in

turn requires that A V cosa+p V cos B +v V cosy = 0 for some value of A.
Lemma 4.2 shows that this can only happen on H. Since o < ZA, it can only
happen on Hy, by definition. Lemma 4.12 establishes that such a singular
point on the intersection of 7or, and Hy must be unique.

Consider modifying Zor,, in a very small way, as follows. Begin with a

“«—>
very small circle on Tor,, near the apex B and around BC, of the sort used

in Lemma 2.9, one on which the surface gradient v/, does not vanish, and
has the winding number 0, 1 or 2. This circle divides Zor, into two portions,
one of which is tiny and includes B. Now alter Zor, by smoothly replacing
this tiny portion with a smooth tiny region. Do likewise near the apex C
using a tiny circle near it. The result is a smooth surface on which the scalar

field @ and the vector field v7,@Q are smoothly defined.

Since the winding number of v/, () around the tiny circle near B is still
0, 1 or 2, the sum of the indexes of the singularities inside the new tiny
region near B must be 0, 1 or 2. Similarly near C. By Theorem 3.33, there

',
are either one or two other singuarities for 57,Q on (the slightly altered) Zor,,
that occur in the zy-plane, and these are relative maximum points for Q. So

.
the index of each of these, as a singularity for 7, @, is one. Together the sum
of the indexes of all of the singularities considered thus far is at least one.

Now, if there is a singularity for 7@ in the upper half of (the slightly
altered) Zor,, then it is unique, and by reflection, there is a corresponding
singularity in the lower half of (the slightly altered) Zor,, and vice-versa.
The sum of the indexes of these two singularities must be an even integer.
However, it cannot exceed zero because, by the Poincaré-Hopf Theorem (see

—

[2]), the sum of the indexes of all of the singularities of 57,Q on the slightly
altered Jor, must equal two. This is because this surface is smooth and

N
homeomorphic to a sphere. Thus the index of a singularity v/,@ in the upper
half of (the slightly altered) Zor, cannot be positive, and so cannot correspond
to a relative extremum for (). Ditto for the lower half of the slightly altered
Tor,,. The remaining claims now follow easily.

5. Completion of the Proof of Theorem 1.1 and Beyond

Proving the remaining parts of Theorem 1.1 will depend on the preced-
ing analysis concerning the scalar field ) = pcosf + vcos~y on the toroid
Tory, (o < £LA). These last two parts are actually easy consequences of the
following more general assertion.

Theorem 5.1. Assuming that ANABC is acute, that o < LA, and that p
and v are non-negative constants, the inequality Q = pcosf +vcosy =
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min{ pcos LB +vcos(LB+a), pcos(LC +a)+vcos LC' } holds at all points
on ‘ory, other than B and C.

Proof. First, consider @ with = 1 and v = 0. By Theorem 4.14, the infimum
value for @ (= cos3) occurs when approaching either B or C. The limiting
value of (Q when approaching B is just cos ZB, independent of the path
used to approach B. The situation is more complicated near C'. By again

considering a tiny circle on Zor,, near C' and around BC, similar to the
circle used in Lemma 2.9 near B, it is straightforward to check that the
extreme values for 8 occur at the two points of intersection of the circle and
the xy-plane. These extreme values for 8, when infinitesimally close to C,
are ZC + a and |£C — «. Thus, cos(ZC + «) is the minimal limiting value
for cos f when approaching C' on Zor,. The inequality to be proved here
therefore holds when p = 1 and v = 0. It similarly holds when p = 0 and
v=1.

In the general case, Theorem 4.14 still guarantees that the infimum value
for @ on Tor, occurs when approaching either B or C. The extreme values
for @ on the infinitesimally small circles on Zor, around B and around C
are easily determined from the above special cases. The specified inequality
in the general case then follows directly.

We are now prepared to complete the proof of Theorem 1.1.

Proof of Part 8 of Theorem 1.1. This is just the 4 = 1 and v = 0 special
case of Theorem 5.1, since all of the cosines involved are of angles in the
range from 0 to 7. This establishes Part 3 of Theorem 1.1.

o

Proof of Part J of Theorem 1.1. Consider the special case of Theorem 5.1
where p = cos ZC and v = cos ZB. Here we obtain Q > min{ cos ZC cos ZB+
cos LB cos(£B + ), cos LC cos(£LC + a) + cos LB cos ZC' } = min{ cos LC
cos LB+ cos LB cos(£LB + £LA), cos LC cos(LC + LA) + cos LBcos LC'} =
min{0, 0} = 0. This establishes Part 4 of Theorem 1.1.

Note: If we regard the constaints in Theorem 1.1 as describing a region in
the 3-dimensional real space of all possible triples («, 3,7), this region is
bounded. It is “nearly” a non-convex polyhedron, typically. Figure 6 shows
an example. The last set of constraints in Theorem 1.1 are nonlinear, which
is why the region fails to be a polyhedron.

Note: The problem considered in this paper can be flipped. Instead of asking
what restrictions given A, B and C place on «, § and +, we could instead ask
what restictions given «, § and « place on A, B and C. This problem is also
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FI1GURE 6. Bounding region

non-trivial, though it is simpler. The interested reader is encouraged to ex-
plore it via an evident system involving six applications of the Law of Cosines.

Note: While the possible triples («, 8,7) have been of primary interest, a
related issue is constraining the possible triples of dihedral angles (angles
between faces of the tetrahedron) at the point P. Three equations involving
these, the other three dihedral angles (involving the face AABC), and the
known interior angles of AABC, can be helpful for this. Still, useful con-
straints here seem to be at least as complicated as the constrains for the

(a, B,7y) triples.

Note: Besides the set of constraints in Theorem 1, some “near constraints”
have also been discovered:

a<LA AN LB2/LC AN LB LA+ /LC —
(LA)(B+v—a) + (LB—-LC)(a+B—7) < 2LALB,

and
a< LA AN LB>2/C AN B=24B —

(LA)(B+~v—a)+ (UB-ZLC)(B—v—a) < 2LALC,

and suitable permutations of these. While these appear to further restrict the
region of allowable («, 3,7) triples, they have not been rigourously proved to
do so. In fact, there is some evidence that they fail very slightly but only very
near the triangle vertices, A, B and C. Though evidence has been gathered,
for different triangles, these claims are currently only conjectural.

Note: The appendix contains the C++ source code for a computer program
that can be used to explore and test how well the constraints in Theorem 1.1
perform in describing the region of all allowable («a, §,7) triples, as a subset
of the cube [0,7]3, for specified values of A, B and C. It is also available
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at https://github.com/mgrieck/tetrahedron_test.cpp. Besides gather-
ing data, it can also be used to visualize (via slices) this region of allowable
(a, B,7) triples, as well as the bounding region described by the Theorem 1.1
constraints. As suggested by Figure 6, these regions are geometrically rather
interesting.

It is clear from such experiments that the constraints do a fairly good
job bounding the allowable («, 5, ) triples, but these experiments also clearly
suggests that additional constraints, including linear constaints, should be
added to the system to achieve a system that strongly bounds the triples.
Also, by “uncommenting” a “define directive” in the program, it can be al-
tered to include the “near constraints” mentioned in the previous note, but
the improvement from these additional constraints is rather modest.
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Appendix

// tetrahedron_test.cpp (by M. Q. Rieck)

// Note: This is test code for the results in my "tetrahedron and toroids" paper.

// Note: This C++ program uses passing-by-reference. It can be easily converted to a C
// program by altering this aspect of function call, and by changing the includes.

#include <cstdio>
#include <cmath>

#define M 1000 // how many (alpha, beta, gamma) points (M~3)7
#define N 80 // how fine to subdivide the interval [0, pil
#define 0 1 // set higher to avoid low "tilt planes"
#define pi M_PI

// #define USE_NEAR_RULES

// The tau’s are "tilt angles" for three planes, each containing one of the sidelines of
// the triangle ABC. Dihedral angle formulas are used to find the "view angles", alpha,
// beta and gamma, at the point of intersection of the three planes.
bool tilt_to_view_angles(double taul, double tau2, double tau3, double cosA, double cosB,
double cosC, double& alpha, double& beta, double& gamma, int& rejected) {

double cos_taul, cos_tau2, cos_tau3, sin_taul, sin_tau2, sin_tau3;

double cos_deltal, cos_delta2, cos_delta3, sin_deltal, sin_delta2, sin_delta3;

cos_taul = cos(taul), cos_tau2 = cos(tau2), cos_tau3 = cos(tau3);

sin_taul = sin(taul), sin_tau2 = sin(tau2), sin_tau3 = sin(tau3);

cos_deltal = sin_tau2 * sin_tau3 * cosA - cos_tau2 * cos_tau3;

cos_delta2 = sin_tau3 * sin_taul * cosB - cos_tau3 * cos_taul;

cos_delta3 = sin_taul * sin_tau2 * cosC - cos_taul * cos_tau2;

sin_deltal = sqrt(1l - cos_deltal*cos_deltal);
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sin_delta2 = sqrt(1 - cos_delta2*cos_delta2);

sin_delta3 = sqrt(l - cos_delta3*cos_delta3);

alpha = acos((cos_deltal + cos_delta2 * cos_delta3) / (sin_delta2 * sin_delta3));
beta = acos((cos_delta2 + cos_delta3 * cos_deltal) / (sin_delta3 * sin_deltal));
gamma = acos((cos_delta3 + cos_deltal * cos_delta2) / (sin_deltal * sin_delta2));
if (alpha < O || alpha > pi || beta < O || beta > pi || gamma < O || gamma > pi ||

alpha > betatgamma || beta > gammatalpha || gamma > alphatbeta || alphatbeta+
gamma > 2%pi) { rejected++; return false; } else return true;

}

void clear_array(int a[N][N][N]) {
for (int i=0; i<N; i++)
for (int j=0; j<N; j++)
for (int k=0; k<N; k++)
alil[j1[x] = 0;
}

int ind(double angle) {
int i = (int) (N*angle/pi);
if (1 <0) i=0;
if (i >= N) i = N-
return ij;

1;
}

void show_array(int a[N][N][N]) {
printf ("\n\n\n");
for (int i=0; i<N; i++) {
for (int j=0; j<N; j++) {
for (int k=0; k<N; k++) {
switch (alil[j1(k]) {
case 0: printf("."); break; // a "prohibited" cell that is empty
case 1: printf("x"); break; // a "prohibited" cell containing a data pt.
case 2: printf(" "); break; // an "allowable" cell that is empty
case 3: printf("o"); // an "allowable" cell containing a data pt.
}
}
printf("\n");

printf("\n");
for (int k=0; k<N; k++) printf("_");
printf("\n\n");

printf("\n");

int main() {

int states[N][N][N], state, total, countO, countl, count2, count3, rejected = 0;
double A, B, C, cosA, cosB, cosC, sinA, sinB, sinC, alpha, beta, gamma, taul,
tau2, tau3;

// Set angles for an ACUTE base triangles ABC
A = 8%pi/19; B = 6%pi/19; C = b5*pi/19;

cosA = cos(A); cosB = cos(B); cosC = cos(C);
sinA = sin(A); sinB = sin(B); sinC = sin(C);
clear_array(states);

// Use 3D array to record possible (alpha, beta, gamma) triples for given triangle
for (int i=0; i<M-0; i++)
for (int j=0; j<M-0; j++)
for (int k=0; k<M-0; k++)
if (tilt_to_view_angles(i*pi/M, j*pi/M, kxpi/M, cosA, cosB, cosC, alpha,
beta, gamma, rejected)) states[ind(alpha)][ind(beta)][ind(gamma)] = 1;

// Also use array to record which cells in the array are within system of bounds
for (int i=0; i<N; i++)
for (int j=0; j<N; j++)
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for (int k=0; k<N; k++) {

alpha = (i+.5)*pi/N;

beta = (j+.5)*pi/N;

gamma = (k+.5)*pi/N;

if (
A + beta + gamma < 2*pi &&
alpha + B + gamma < 2*pi &&
alpha + beta + C < 2*pi &&

(alpha > A || beta < B || beta
(alpha > A || gamma < C || gamma
(beta > B || gamma < C || gamma
(beta > B || alpha < A || alpha
(gamma > C || alpha < A || alpha
(gamma > C || beta < B || beta
(alpha > A || cosC * cos(beta) +
(beta > B || cosA * cos(gamma) +
I

(gamma > C cosB * cos(alpha) +

#ifdef USE_NEAR_RULES

#endif

}

// Show slices of the array, indicating the

&% (alpha > A || B<C || B> A +
A x (beta + gamma - alpha) + (B
&% (alpha > A || C<B ||l C> A+
A * (gamma + beta - alpha) + (C
&& (beta >B || C<A || C>B +
B * (gamma + alpha - beta) + (C
& (beta >B || A<C || A>B+
B * (alpha + gamma - beta) + (A
&& (gamma > C || A<B || A>C +
C x (alpha + beta - gamma) + (A
&& (gamma > C || B <A || B> C +
C * (beta + alpha - gamma) + (B
&% (alpha > A || B < C || beta <
A * (beta + gamma - alpha) + (B
&& (alpha > A || C < B || gamma <
A * (gamma + beta - alpha) + (C
& (beta > B || C < A || gamma <
B * (gamma + alpha - beta) + (C
&% (beta > B || A < C || alpha <
B * (alpha + gamma - beta) + (A
&& (gamma > C || A < B || alpha <
C * (alpha + beta - gamma) + (A
&& (gamma > C || B < A || beta <
C * (beta + alpha - gamma) + (B

) states[i] [j]1[k] += 2;

show_array(states) ;
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nature of each cell.

// Compute and display statistices for the given triangle ABC.
total = countO = countl = count2 = count3
for (int i=0; i<N; i++)

for (int j=0; j<N; j++)

}

for (int k=0; k<N; k++) {

switch (states[i][j]1[k]) {
case 0: countO++; break;

case 1: countl++; break;
case 2: count2++; break;
case 3: count3++;

}

total++;

printf ("Number of occupied allowable
printf ("Number of unoccupied allowable
printf ("Number of occupied unallowable

printf ("Number of unoccupied unallowable
printf("Total number of cells in the array:

= 0;

cells:
cells:
cells:

cells:

%d\n",
%d\n",
%d\n",

%d\n",
%d\n",

count3);
count?2);
countl);

count0) ;
total);

B)
C)
c)
A)
A)
B)
C)
B)
A)
c)
B)

19}
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printf ("Number of rejected calls for a data point: %d\n", rejected);
printf (" (Note: near the boundary, an \"unallowable\" cell might actually ");
printf("have an allowable portion.)\n\n");
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