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Abstract

Deltoid curves appear as consequences of certain procedures in triangle geometry.
The best known of these is the construction based on Simson lines, described by Steiner.
This is carefully related, in this article, to a less known construction. The standard
deltoid in the complex plane and its tangent lines are principle objects of study in this
report. It is known that each point in the interior of this curve is the orthocenter of
a triangle with distinct vertices on the unit circle, whose product is one. (If instead
the point is on the deltoid, then at least two of the vertices coalesce, resulting in a
degenerate triangle.)

When the vertices are all raised to some specified integer power, a new (possibly
degenerate) triangle results. By varying the triangle, one may thus consider the map
taking the original triangle’s orthocenter to the resulting triangle’s orthocenter. Such
maps are the other principle objects of study here. The points that are mapped to
the deltoid lie on easily described curves. By varying the power involved in the map,
a pleasing family of curves results, which includes a trifolium curve. The points that
are mapped instead to the origin are described as the points of intersection of certain
tangents to the deltoid.

1 Introduction

Deltoid curves, also called tricuspids/tricuspoids, are easily described by rolling a circle inside
a circle whose radius is three times bigger than that of the rolled circle. A point fixed relative
to the rolled circle travels along a deltoid curve in the plane for which the larger circle is
fixed (cf. [2], [6], and [7]). All deltoids in a plane are of course equivalent in the sense that
any one of them can be transformed into any other one by a combination of scaling, rotating
and translating. It is convenient and sufficient throughout this paper to focus solely on the
“standard” deltoid in the Cartesian plane, which satisfies the equation

(x2 + y2)2 + 18(x2 + y2)− 8x3 + 24xy2 − 27 = 0. (1.1)

When the plane is regarded as the complex plane, as will be the case throughout, the equation
can be rewritten as
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z2 z̄2 − 4(z3 + z̄3) + 18zz̄ − 27 = 0. (1.2)

This deltoid can also be expressed as the curve traced out by

z = 2eiθ + e−2iθ (1.3)

as the real parameter θ ranges from say −π to π (cf. [3]).

Lemma 1.1. For fixed θ, the line segment connecting the two points ±2eiθ + e−2iθ on the
deltoid is tangent to the deltoid at the point e4iθ + 2e−2iθ. Also, this segment has slope tan θ
and length 4.

Proof. First we must establish that the points −2eiθ + e−2iθ and e4iθ + e−2iθ are indeed on
the deltoid; 2eiθ + e−2iθ certainly is. Replacing θ by θ+ π in 2eiθ + e−2iθ yields −2eiθ + e−2iθ,
so −2eiθ + e−2iθ is on the deltoid. Replacing θ by −2θ in 2eiθ + e−2iθ yields e4iθ + 2e−2iθ, so
e4iθ + 2e−2iθ is on the deltoid.

Next, we need to know that the points ±2eiθ + e−2iθ and e4iθ + 2e−2iθ are collinear.
(e4iθ +2e−2iθ)− (±2eiθ + e−2iθ) = e4iθ + e−2iθ∓ 2eiθ = eiθ(e3iθ + e−3iθ∓ 2) = 2 eiθ(cos 3θ∓ 1).
The tangent of the argument of this is just tan θ, regardless of which sign we use for “±.”
So it is clear that the three points are collinear and lie on a line with slope tan θ.

Now consider the tangent line to the deltoid at z = x+ iy = 2eiθ + e−2iθ. This has slope

dy

dx
=

dy
dθ
dx
dθ

=
d
dθ
[2 sin θ − sin 2θ]

d
dθ
[2 cos θ + cos 2θ]

=
2 cos θ − 2 cos 2θ

−2 sin θ − 2 sin 2θ
=

cos 2θ − cos θ

sin 2θ + sin θ
=

2 cos2 θ − cos θ − 1

sin θ (2 cos θ + 1)
=

(cos θ − 1)(2 cos θ + 1)

sin θ (2 cos θ + 1)
=

cos θ − 1

sin θ
=

− sin θ

cos θ + 1
= − tan

θ

2
.

By replacing θ with −2θ, we see that the slope of the tangent line at e4iθ + 2e−2iθ is just
tan θ, and therefore this must be the line connecting the two points ±2eiθ + e−2iθ.

Of course, the segment has length 4 since (2eiθ + e−2iθ)− (−2eiθ + e−2iθ) = 4eiθ. All that
remains is to show that the point e4iθ + 2e−2iθ lies between the points ±2eiθ + e−2iθ. But we
can write 2 (e4iθ + 2e−2iθ) = (1 + λ)(2eiθ + e−2iθ) + (1− λ)(−2eiθ + e−2iθ) = 4λeiθ + 2e−2iθ.
Solving for λ, we get λ = 1

2
(e3iθ + e−3iθ) = cos 3θ. Since |λ| ≤ 1, it is now evident that

e4iθ + 2e−2iθ lies between ±2eiθ + e−2iθ (not necessarily strictly though).

The line segments described in the lemma are of particular importance. Because of
their well-known connection with the Kakeya needle problem, they might be called needle
positions, though they will just be referred to as needles here. With the above foundation,
we will now proceed to present a few interesting and related phenomena, some of which are
already known, but most of which appears to be new. All of it is concerned with the geometry
of a triangle, and very likely there are additional possible connections with the subject of
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triangle geometry that could be discovered. Actually, an already known connection involves
rectangular circum-hyperbolas, though this will not be explored in this paper (cf. [1]). It
would also be desirable to better relate these topics to a certain three-dimensional geometry
problem (cf. [8]).

2 Deltoids produced by triangle-related constructions

Figure 1: Three triangles and a deltoid

Two of the better known deltoid constructions that result from studying triangle geome-
try are the Steiner deltoid and a deltoid that Kimberling describes in Chapter 6 of his book
[5]. Being unaware of any published proof of the existence of the latter, nor any published
connection of it to the Steiner deltoid, such a connection will now be presented and proved.
However, we will approach these constructions in reverse, by starting with the deltoid. Nev-
ertheless, in this way we are able to establish the correctness of the two constructions.

Beginning with the standard deltoid, and for any given real number θ, let us identify the
following points for discussion: α = eiθ, α′ = −α = −eiθ, β = e−2iθ, β′ = −β = −e−2iθ,
γ = e−2iθ + 2eiθ, γ′ = e−2iθ − 2eiθ, δ = e4iθ + 2e−2iθ. As we know from Lemma 1.1, γ, γ′ and
δ are collinear and lie on the deltoid, with δ between γ and γ′, and this line is tangent to
the deltoid at δ with slope tan θ. Referring to the segment of this line connecting γ and γ′

as the “needle” N , the midpoint of this needle is β and this lies on the unit circle as well as
on N . We now need to look at two other lines. Let L be the line connecting γ and β′, and
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let L′ be the line connecting γ′ and β′. So L and L′ intersect at β′. The midpoint between
γ (γ′) and β′ is α (α′), and so α (α′) is on the line L (L′).

Lemma 2.1. The lines L and L′ are perpendicular. Moreover, L (L′) is tangent to the
deltoid at γ (γ′). Thus, as θ varies, the pencil of lines L (L′) has the deltoid as its envelope.

Proof. The slope of L is the tangent of the argument of (e−2iθ + 2eiθ) − (−e−2iθ), which is
the tangent of the argument of e−2iθ + eiθ, which is

− sin 2θ + sin θ

cos 2θ + cos θ
=

−2 cos θ sin θ + sin θ

2 cos2 θ − 1 + cos θ
=

sin θ(1− 2 cos θ)

−(1 + cos θ)(1− 2 cos θ)
= − tan

θ

2
.

But in the proof of Lemma 1.1, it was shown that the tangent line to the deltoid at γ has
slope − tan θ/2, and so must be L. Similarly, it is straightforward to show that L′ and the
tangent line to the deltoid at γ′ both have slope cot θ/2, and so must be the same line. Based
on their slopes, it is clear that L and L′ are perpendicular. There is a line L (L′) for each γ
(γ′) on the deltoid, and it is clear that the deltoid is the envelope of this pencil of lines.

Next fix three distinct complex numbers z1 = x1+iy1, z2 = x2+iy2 and z3 = x3+iy3 with
|z1| = |z2| = |z3| = z1z2z3 = 1, and regard these as the vertices of a triangle with the unit
circle as its circumcircle. We will henceforth refer to such a triangle as being “amenable.”
Of course it will be a degenerate triangle if any two of z1, z2 and z3 are equal, which is
allowed. It will sometimes be helpful to select ϕ1, ϕ2 and ϕ1 so that z1 = eiϕ1 , z2 = eiϕ2 ,
z3 = eiϕ3 , and ϕ1 + ϕ2 + ϕ3 = 0. Let zH = z1 + z2 + z3. It is straightforward (cf. [6]) to
see that zH is the orthocenter of the triangle, and that z2z3 + z3z1 + z1z2 = zH . Because
two other (non-amenable) triangles need to be considered, the triangle with vertices z1, z2
and z3 will be called the “reference triangle.” One of the other two triangles has −z1, −z2
and −z3 as vertices, and so is the reflection of the reference triangle about its circumcenter.
Let us call this the “reflected triangle.” We also need the triangle that has z1 − z2 − z3,
−z1 + z2 − z3 and −z1 − z2 + z3 as its vertices, which is the antimedial (anticomplementary)
triangle of the reflected triangle. It can also be obtained via a homothetic transformation
of the reference triangle, scaling by a factor of two, and using zH as the homothetic center.
Thus, its orthocenter is also zH . Let us call this triangle the “large triangle.” We are now
ready to prove the claim about the deltoid construction in Chapter 6 of [5].

Theorem 2.2. With respect to the reflected triangle, the point β is on its circumcircle, and
the isogonal complement of β is the point at infinity in the direction of the needle N that
passes through β, γ and γ′. Consider the line connecting β to its isogonal complement (at
infinity). As θ varies, the result is a pencil of lines whose envelope is the deltoid.

Proof. With respect to the reflected triangle, the interior angle bisector at the vertex−z3 goes
through a point of the unit circle midway between −z1 and −z2, so is either ±ei(ϕ1+ϕ2)/2 =
±e−iϕ3/2. If +e−iϕ3/2 then when the line through −z3 and β is reflected about this interior
angle bisector, the resulting line passes through −z3 and ei[2(−ϕ3/2)−(−2θ)] = ei(2θ−ϕ3). But if
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−e−iϕ3/2 then in the previous computation, ϕ3/2 can be replaced with π + ϕ3/2 to yield the
same answer, ei(2θ−ϕ3). Let us now compute the slope of this resulting line through −z3 and
ei(2θ−ϕ3). This is the tangent of the argument of ei(2θ−ϕ3) + eiϕ3 , which equals

sin(2θ − ϕ3) + sinϕ3

cos(2θ − ϕ3) + cosϕ3

=
− cos 2θ sinϕ3 + sin 2θ cosϕ3 + sinϕ3

cos 2θ cosϕ3 + sin 2θ sinϕ3 + cosϕ3

=

sinϕ3 (1− cos 2θ) + cosϕ3 sin 2θ

cosϕ3 (1 + cos 2θ) + sinϕ3 sin 2θ
=

sin θ (sinϕ3 sin θ + cosϕ3 cos θ)

cos θ (sinϕ3 sin θ + cosϕ3 cos θ)
= tan θ.

This is the same as the slope of the needle N , and so N is parallel to the line that we just
constructed. Now, since β is on the circumcircle of the reflected triangle (the unit circle),
this constructed line is aimed in the direction of the point at infinity that is the isogonal
conjugate of β. It is parallel to the line extending N , and so these two lines have the same
point at infinity. Focus now on the line that extends N . Allowing θ to vary now, these lines
form a pencil of tangent lines to the deltoid, and it is clear that the deltoid is its envelope.

We next turn our attention to the construction of a deltoid based on Simson lines, as
developed by Steiner. This will here be seen to be related to the above construction. Our
primary focus now is on the “large triangle”, i.e. the large dashed triangle in Figure 1, whose
vertices are not labeled. First note that the nine-point circle of this triangle is the same as
the circumcircle of the reference triangle (and the reflected triangle).

Theorem 2.3. With respect to the large triangle, let ε and ε′ (= −ε) be the opposite ends
of the diameter of the circumcircle of the large triangle that is parallel to the diameter of its
nine-point circle, connecting α and −α. Assume that when moving along these two diameters
in the same direction, ε and ε′ occur in the same order as do α and α′. Then the Simson
lines for ε and ε′ are L and L′, respectively. As θ varies, the lines L (L′) form a pencil of
lines whose envelope is the deltoid.

Proof. Recall that the large triangle is obtained from the reference triangle by a homothetic
transformation, centered at zH , using a scale factor of two. Its vertices are 2z1 − zH =
z1 − z2 − z3, etc. Since this transformation maps the reference triangle to the large triangle,
it maps the reference triangle’s circumcircle to the large triangle’s circumcircle. It is also
clear that ε and ε′ are the images of α and α′, respectively. Thus, ε = 2α− zH = 2eiθ − zH
and ε′ = 2α′ − zH = −2eiθ − zH . Consider the projection of ε onto the sideline through the
vertices −z1 + z2 − z3 and −z1 − z2 + z3. Let us denote this point as w = u + iv (u and v
real) for the moment. Letting zj = xj + iyj (xj and yj real; j = 1, 2, 3), it is required that

v − (−y1 + y2 − y3)

u− (−x1 + x2 − x3)
=

y2 − y3
x2 − x3

,

so that (y3− y2)u+(x2−x3)v = (x3−x2)y1+x1(y2− y3). The orthogonality means that it
is further required that (x3−x2)(u− 2 cos θ+xH)+ (y3− y2)(v− 2 sin θ+ yH) = 0. Solving
these two equations for u and v yields
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u =
(x2 − x3)

2

1− x2x3 − y2y3
cos θ +

(x2 − x3)(y2 − y3)

1− x2x3 − y2y3
sin θ − x1 =

(1− x2x3 + y2y3) cos θ − (x2y3 + x3y2) sin θ − x1 = (1− x1) cos θ + y1 sin θ − x1

and

v =
(x2 − x3)(y2 − y3)

1− x2x3 − y2y3
cos θ +

(y2 − y3)
2

1− x2x3 − y2y3
sin θ − y1 =

−(x2y3 + x3y2) cos θ + (1 + x2x3 − y2y3) sin θ + y1 = y1 cos θ + (1 + x1) sin θ − y1.

Now we will show that w is on the line L. α is on L, and w − α = w − eiθ, so the slope
of the line containing w and α is

v − sin θ

u− cos θ
=

(y1 cos θ + x1 sin θ − y1)(x1 cos θ + y1 sin θ + x1)

(−x1 cos θ + y1 sin θ − x1)(x1 cos θ + y1 sin θ + x1)
=

− sin θ

1 + cos θ
= − tan

θ

2
.

But in the proof of Lemma 2.1, it was shown that this is the slope of L. Therefore w is on
L, and, by symmetry, we see that L is the Simson line for ε. Similarly, L′ is the Simson line
for ε′. By Lemma 2.1, L and L′ are tangent to the deltoid, and so as θ varies, L (L′) sweeps
out a pencil of lines whose envelope is the deltoid.

3 Deltoid interior points as triangle orthocenters

We begin this section by exploring needles and tangent lines for the deltoid, starting with the
following technical lemma that is obvious from the graph of the deltoid. It is evident from
its graph that the deltoid separates the rest of the plane into an “inside” and an “outside,”
and except at the three cusps of the deltoid, that a tangent line does not cut from one side
to the other side at the point of tangency.

One could observe here that if x and y in (1.1) are replaced respectively with tx and
ty, the discriminant of the resulting quartic polynomial in t is a negative constant times
y4 (3x2 − y2)4. So generally, the quartic has only two (distinct) real roots. Assuming that x
and y satisfy (1.1), then one of these roots is 1, and with a little effort, it can be established
that the other root is negative. It is then safe to describe the inside (outside) of the deltoid
as the totality of points (tx, ty) for which (x, y) satisfies (1.1) and 0 ≤ t < 1 (1 < t).

One way to establish the claim about the tangent lines would be to consider the evolute
of the deltoid. This is the curve whose points are curvature centers for the deltoid. It is well
known that the evolute of a deltoid is also a deltoid, three times bigger (in a linear sense)
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than the original deltoid, and oriented in the opposite direction. So the curvature centers
are outside the circle of radius 3 and inside the circle of radius 9, while the original deltoid
is inside the circle of radius 3, except at its cusps. This eliminates the possibility of any
non-cusp inflection points on the original deltoid.

Lemma 3.1. Consider any point on the deltoid, and its tangent line. This tangent line
contains a unique needle, which in turn contains the point, and which stays inside the deltoid,
except at the points that are on the deltoid.

Proof. The point can clearly be written as e4iθ+2e−2iθ for some real θ. Lemma 1.1 makes it
clear that this point is on a needle, which of course is on the tangent line to the deltoid at
the point. The tangent line can be parameterized as 2λeiθ + e−2iθ with λ ranging over the
real numbers. In the proof of Lemma 1.1, we observed that e4iθ + 2e−2iθ = ±2eiθ + e−2iθ +
2 eiθ(cos 3θ ± 1), from which we see that e4iθ + 2e−2iθ = λeiθ + e−2iθ with λ = cos 3θ. We
also know that the points for which λ = ±1 are on the deltoid.

If we now set z = 2λeiθ + e−2iθ into (1.2), we obtain the equation

4(1− λ2)(1− 2λe3iθ + e6iθ) = 0.

The only three solutions for λ are the three that we have already identified, so the tangent
line only intersects the deltoid at the corresponding three points. If e4iθ+2e−2iθ is not a cusp
of the deltoid, then the tangent line does not cut the deltoid at this point. The line can be
seen to be non-tangent at ±2eiθ + e−2iθ, and so it cuts the deltoid at these two points. The
point e−2iθ is on the line and also inside the deltoid, except in the three special cases where
it is on the deltoid. So except in a few special cases, we are able to say that 2λeiθ + e−2iθ

is inside (outside) the deltoid when |λ| < 1 (|λ| > 1). It is then very clear that the tangent
line contains a unique needle, the one connecting ±2eiθ + e−2iθ, which of course contains
e4iθ + 2e−2iθ. In the special cases, e4iθ + 2e−2iθ can be seen to coalesce with one of the ends
of the needle. These cases can be handled as limiting cases.

Lemma 3.2. Two lines that are tangent to the deltoid intersect at a point on the deltoid or
in its interior.

Proof. Let’s consider two tangent lines, 2λ1e
iθ1+e−2iθ1 and 2λ2e

iθ2+e−2iθ2 , where θ1 and θ2 are
fixed real numbers, but λ1 and λ2 ranges over all real numbers. By solving 2λ1e

iθ1 +e−2iθ1 =
2λ2e

iθ2 + e−2iθ2 for λ1 and λ2, we will of course locate the point of intersection of the two
lines. This amounts to solving the following matrix equation:

2

[
cos θ1 − cos θ2
sin θ1 sin θ2

] [
λ1
λ2

]
=

[
cos 2θ2 − cos 2θ1
sin 2θ1 − sin 2θ2

]
.

The solution to this is as follows:[
λ1
λ2

]
=

[
cos(θ1 + 2θ2)
cos(2θ1 + θ2)

]
.
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In particular we see that |λ1| ≤ 1 and |λ2| ≤ 1, indicating that the two tangent lines intersect
at a point on the deltoid or in its interior.

Lemma 3.3. Each of the three altitude lines for the reference (amenable) triangle are tangent
lines of the deltoid.

Proof. Consider again the reflected triangle (whose vertices are −z1, −z2 and −z3). With
respect to this triangle, the isogonal conjugate of −z1 is the point at infinity in the direction
given by the sideline connecting −z2 and −z3. The point z1 is antipodal to −z1 on the
circumcircle, so its isogonal conjugate must be the point at infinity in the direction perpen-
dicular to the sideline connecting −z2 and −z3. But this sideline is parallel to the sideline
of the reference triangle connecting z2 and z3. So the construction in Theorem 2.3 assigns
to the point z1, the altitude line through z1 for the reference triangle. But Theorem 2.3
indicates that this line is a tangent line for the deltoid. Similarly for the other two altitude
lines.

Theorem 3.4. With z1, z2 and z3 as the vertices of a amenable triangle, its orthocenter zH
satisfies zH = z1 + z2 + z3, and this point is on the deltoid or in its interior.

Proof. The fact that zH = z1+ z2+ z3 follows from [(x1+x2+x3)−x1](x2−x3)+ [(y1+y2+
y3)− y1](y2 − y3) = (x2 + x3)(x2 − x3) + (y2 + y3)(y2 − y3) = (x22 + y22)− (x23 + y23) = 0.
Now, by Lemma 3.3, each altitude line is a tangent line for the deltoid. By Lemma 3.2, these
lines must intersect on the deltoid or in its interior. But of course zH is by definition this
intersection point.

Corollary 3.5. Fix a real number θ. Consider the needle whose slope is tan θ, that is, the
needle parameterized by 2λeiθ + e−2iθ (−1 ≤ λ ≤ 1). If the orthocenter zH of the triangle
with vertices z1, z2 and z3 is on the needle, then zH = 2λ0e

iθ + e−2iθ for some λ0 with
−1 ≤ λ0 ≤ 1, and { z1, z2, z3 } = { e−2iθ, (λ0 ± i

√
1− λ20) e

iθ }

Proof. Just check that for these choices of z1, z2 and z3, |z1| = |z2| = |z3| = z1z2z3 = 1 and
z1 + z2 + z3 = 2λ0e

iθ + e−2iθ.

4 A family of transformations of triangles

Here and throughout the remainder of this paper, we continue to let z1, z2 and z3 be complex
numbers satisfying |z1| = |z2| = |z3| = z1z2z3 = 1. We continue to regard these as the vertices
of an amenable triangle, though this would be a degenerate triangle if any two of the vertices
are the same, which is allowed. We continue to let zH denote the orthocenter of the triangle,
noting again that zH = z1 + z2 + z3 and that it is guaranteed to be on or inside the deltoid.
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Fix an integer n. A function pn will be defined and investigated in this and in the next
section of this paper. The domain and codomain of pn are the set of complex numbers z on
or inside the deltoid, that is, the set of complex numbers z satisfying

z2 z̄2 − 4(z3 + z̄3) + 18zz̄ − 27 ≤ 0. (4.1)

We will need the following fact before defining pn.

Lemma 4.1. If zH satisfies (4.1) when zH is substituted for z, then there exists a unique
multi-set of numbers {z1, z2, z3} such that |z1| = |z2| = |z3| = z1z2z3 = 1 and z1+z2+z3 = zH .

Proof. As indicated previously, such numbers would necessarily also satisfy z2z3 + z3z1 +
z1z2 = zH , and so these numbers would be the roots of the following cubic equation:

z3 − zH z
2 + zH z − 1 = 0. (4.2)

Of course, the multi-set of roots of this is equation is unique, establishing the uniqueness of
{z1, z2, z3}. To establish the existence of a suitable {z1, z2, z3}, we will cite Theorem 4 in
[6], which uses the fact that the discriminant of the cubic polynomial here is the familiar
z2H zH

2 − 4(z 3
H + zH

3) + 18zH zH − 27, and which transforms the cubic, by substituting
(iw + 1)/(iw − 1) for z, to obtain a cubic in w whose real roots are then investigated. The
theorem asserts that for any complex number zH , the discriminant is real, that at least one
of the polynomial roots is on the unit circle, and that all three roots are on the unit circle if
and only if the discriminant is negative. It is actually more accurate to say “non-positive”
here instead of “negative” because the case when the discriminant is zero also results in all
of the roots lying on the unit circle though now there will be a repeated root.

We are now prepared to define the function pn. Given a number zH on or inside the
deltoid, let {z1, z2, z3} be the set of solutions to (4.2). These numbers can be regarded as
the vertices of an amenable triangle. The set of numbers {zn1 , zn2 , zn3 } also satisfies the same
properties as the {z1, z2, z3}, namely, |zn1 | = |zn2 | = |zn2 | = zn1 z

n
2 z

n
3 = 1. Regarding {zn1 , zn2 , zn3 }

as the vertex set for another amenable triangle, its orthocenter is simply zn1 + zn2 + zn3 , and
of course, this is on or inside the deltoid. pn(zH) is now defined to equal zn1 + zn2 + zn3 .

Lemma 4.2. A few examples of pn(z) are as follows

p0(z) = 3

p1(z) = z

p2(z) = z2 − 2z̄

p3(z) = z3 − 3zz̄ + 3

p4(z) = z4 − 4z2z̄ + 2z̄2 + 4z
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p5(z) = z5 − 5z3z̄ + 5zz̄2 + 5z2 − 5z̄

Additionally, the functions pn satisfy the following recurrence relation for n ≥ 4:

pn(z) = z pn−1(z) − z̄ pn−2(z) + pn−3(z) (4.3)

Proof. From (4.2), we know that the elementary symmetric polynomials in z1, z2, z3 have
the following prescribed values: σ0 = 3, σ1 = zH , σ2 = zH , σ3 = 1. Well-known identities
of Newton relate the elementary symmetric polynomials and the power-sum elementary
polynomials, conventionally denoted pn. For instance, p2 = σ1p1−2σ2 and p3 = σ1p2−σ2p1+
3σ3. Also, one of Newton’s formulas states that if n exceeds the number of indeterminates
N used in the polynomials, then

pn =
n−1∑

j=n−N

(−1)n−1+j en−j pj

For our situation, N = 3 and pn = e3 pn−3 − e2 pn−2 + e1 pn−1 = pn−3 − z̄ pn−2 + z pn−1.

Lemma 4.3. For n ≥ 1:

pn(z) = n ·
∑

α,β,γ≥0
(α+2β+3γ=n)

(α + β + γ − 1)!

α! β! γ!
zα (−z̄)β (4.4)

Additionally, pn(e
±2πi/3z) = e±2πin/3 pn(z).

Proof. The summation formula is straightforward to check, by induction, using Lemma 4.2.
Now, if z is replaced with e±2πi/3z, then the general term in the summation will be multiplied
by (e±2πi/3)α−β. But α − β + 2n = 3α + 3β + 6γ ≡ 0 (mod 3). So α − β ≡ n (mod 3).
Thus, (e±2πi/3)α−β = e±2πin/3.

5 Triangles with special “powers”

In this section, the functions pn introduced in the previous section will be investigated with
an eye towards identifying points whose image is in some way special, and thereby also
understand something about amenable triangles whose “powers” are in some way special.
We begin by looking at points z inside the deltoid that are mapped by pn to points on the
deltoid. Since only degenerate amenable triangles have an orthocenter on the deltoid, the
points identified here will be the orthocenters of triangles with the property that at least two
of the vertices have the same n-th power. This may not be a particularly interesting question
to ask about the triangles, but the curves of points z for which pn(z) is on the deltoid are
rather interesting, as is the method for obtaining them.

Lemma 5.1. When w−nB+w2n is substituted for z in z2 z̄2−4(z3+z̄3)+18zz̄−27, assuming
that |w| = 1, the result factors as (B − 2)(B + 2)w−6n(1−Bw3n + w6n)2.

10



Proof.

zz̄ = (w−nB + w2n)(wnB + w−2n) = Bw−3n + (1 +B2) +Bw3n

z2z̄2 = B2w−6n + 2B(1 +B2)w−3n + (1 + 4B2 +B4) + 2B(1 +B2)w3n +B2w6n

z3 + z̄3 = w−6n +B(3 +B2)w−3n + 6B2 +B(3 +B2)w3n + w6n

Here are the coefficients of powers of w in the expansion of z2 z̄2 − 4(z3 + z̄3) + 18zz̄ − 27.

w−6 : (B − 2)(B + 2)
w−3 : 2B(2−B)(B + 2)
w0 : (B − 2)(B + 2)(B2 + 2)
w3 : 2B(2−B)(B + 2)
w6 : (B − 2)(B + 2)

The same coefficients occur in the expansion of (B − 2)(B + 2)w−6n(1−Bw3n + w6n)2.

Lemma 5.2. Assuming that n ≥ 1, that A is real and that |w| = 1, wn pn(w
2+A/w) − w3n

is independent of w, and is a polynomial qn(A) in A only. Moreover, qn(A) = Aqn−1(A) −
qn−2(A) for all n ≥ 3. In fact, qn(A) = (−i)nLn(iA) where Ln is the n-th Lucas polynomial.
Consequently, pn(w

2 + A/w) = w−nqn(A) + w2n = (−i)nw−nLn(iA) + w2n.

Proof. A direct check reveals that the claim is correct for n = 1, 2 and 3. We now argue by in-
duction for n > 3. Assume now that for a given positive n > 3, the claims are true for smaller
values of n. Using the recurrence formula (Lemma 4.2), together with the induction hypothe-
sis, we see wn pn(w

2+A/w)−w3n = wn [ (w2+A/w) pn−1(w
2+A/w)−(w−2+Aw) pn−2(w

2+
A/w) + pn−3(w

2 + A/w) ] − w3n = wn [ (w2 + A/w)(w1−nqn−1(A) + w2(n−1)) − (w−2 +
Aw)(w2−nqn−2(A) + w2(n−2)) + (w3−nqn−3(A) + w2(n−3)) ]− w3n = Aqn−1(A)− qn−2(A) +
[ qn−1(A) − Aqn−2(A) + qn−3(A) ]w

3 = Aqn−1(A) − qn−2(A) = A (−i)n−1 Ln−1(iA) −
(−i)n−2Ln−2(iA) = (−i)n [ (iA)Ln−1(iA) + Ln−2(iA) ] = (−i)nLn(iA). Thus the claims
are true for this particular value of n. By induction, the lemma is true.

Lemma 5.3. Still assuming that A is real, 4− qn(A)
2 = (−1)n(A2 − 4)Fn(iA)

2, where Fn
is the n− th Fibonacci polynomial.

Proof. It is known that

Fn(x) =
(x+

√
x2 + 4)n − (x−

√
x2 + 4)n

2n
√
x2 + 4

andLn(x) =
(x+

√
x2 + 4)n + (x−

√
x2 + 4)n

2n .

From these formulas, it is straightforward to deduce that Ln(x)
2−(x2+4)Fn(x)

2 = 4 (−1)n.
Therefore, 4− qn(A)

2 = 4− (−1)n Ln(iA)
2 = 4− (−1)n [ (−A2 + 4)Fn(iA)

2 + 4(−1)n ] =
(−1)n (A2 − 4)Fn(iA)

2.
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Lemma 5.4. When pn(z) is used in place of z in z2 z̄2 − 4(z3 + z̄3) + 18zz̄ − 27, and then
w2+A/w is substituted for z, where A is real and |w| = 1, the resulting expression is divisible
by (A2 − 4)Fn(iA)

2. So the resulting expression is identically zero when A = ±2 as well as
when iA is a root of Fn.

Proof. pn(z) = pn(w
2+A/w) = w−nqn(A)+w

2n, by Lemma 5.2, and when this is substituted
for z in z2 z̄2−4(z3+ z̄3)+18zz̄−27, the result equals (qn(A)

2−4)w−6n(1−qn(A)w3n+w6n)2,
by Lemma 5.1. By Lemma 5.3, this is divisible by (A2−4)Fn(iA)

2. The rest is then evident.

Figure 2: Curves mapped to the deltoid via p12.

Theorem 5.5. Fix a positive integer n. If n is even, let A be one of the numbers 2 sin(jπ/n)
(j = 0, 1, 2, ..., (n − 2)/2). But if n is odd, let A be one of the numbers 2 sin((2j + 1)π/2n)
(j = 0, 1, 2, ..., (n− 3)/2). The points on the curve that is parameterized by Aeiθ + e−2iθ are
mapped, under the mapping z → pn(z), to the deltoid. The deltoid is also mapped to the
deltoid.

Proof. From the results in [4], iA is a root of the Fibonacci polynomial Fn. This claim about
the curve Aeiθ+e−2iθ now follows immediately from Lemma 5.4, upon setting w = e−iθ. The
deltoid is or course mapped to itself. z1, z2 and z3 are not distinct when zH is on the deltoid,
and so zn1 , z

n
2 and zn3 are not distinct, and so pn(zH) is also on the deltoid.

It is worth noting that Aeiθ + e−2iθ with A = 1 describes a trifolium curve. Figure 2
illustrates Theorem 5.5 for the case when n = 12. We will next see that the function pn
maps needles to needles.

Theorem 5.6. Fix a real number θ. Consider the needle whose slope is tan θ, that is, the
needle parameterized by 2λeiθ + e−2iθ (−1 ≤ λ ≤ 1). Fix also an integer n. The function pn
maps the needle with slope tan θ to the needle with slope tannθ.

12



Proof. By Corollary 3.5, we know that a point 2λeiθ + e−2iθ on the needle is the orthocenter
for the triangle having the vertex set { e−2iθ, (λ± i

√
1− λ2) eiθ }. Write λ = cosψ for some

real ψ. So the vertex set can be written as { e−2iθ, ei(θ±ψ) }. Raising these numbers to the
n-th power, yields the vertex set { e−2inθ, ein(θ±ψ) } for another triangle. This triangle has
orthocenter e−2inθ + 2 einθ cosnψ. This is evidently a point on the needle with slope nθ.

Figure 3: Crossings of certain needles for n = 8.

We will close by considering the points that are mapped to zero by pn. If zH = z1 + z2 +
z3 = 0, then it can be reasoned that the triangle is equilateral, and in fact that {z1, z2, z3} =
{1, e2πi/3, e−2πi/3}. So at the level of the triangles, we are here asking about triangles whose
“n-th power” is this equilateral triangle. The following describes the orthocenters for these
amenable triangles, i.e. all of the complex numbers z for which pn(z) = 0. Figure 3
illustrates this result when n = 8.

Theorem 5.7. Fix a positive integer n. For j1, j2 ∈ {0, 1, 2, · · · 3n − 1} with j1 ̸≡ j2 (mod
3), let j3 ∈ {0, 1, 2, · · · 3n − 1} be such that 3n divides j1 + j2 + j3. The three needles with
slopes tan(−πj1/3n), tan(−πj2/3n) and tan(−πj3/3n) are coincident, and meet at the point
e2πij1/3n+ e2πij2/3n+ e2πij3/3n. Moreover, pn(e

2πij1/3n+ e2πij2/3n+ e2πij3/3n) = 0. In fact, the
equation pn(z) = 0 has n2 solutions, all of which can be obtained in this manner.

Proof. The three needles are described parametrically as 2λeiθ1 + e−2iθ1 , 2λeiθ2 + e−2iθ2 and
2λeiθ3 + e−2iθ3 , where θk = −πjk/3n (k = 1, 2, 3). The point e−2iθ1 + e−2iθ2 + e−2iθ3 is the
intersection of these three needles. It is on the first needle because e−2iθ1 + e−2iθ2 + e−2iθ3 =
e−2iθ1 + ei[θ1−(θ1+2θ2)] + ei[θ1+(θ1+2θ2)] = e−2iθ1 + 2 eiθ1 cos(θ1 + 2θ2). Similarly for the second
and third needles.

Now consider the triple {z1, z2, z3} satisfying |z1| = |z2| = |z3| = z1z2z3 = 1 and zH =
z1 + z2 + z3 = e−2iθ1 + e−2iθ2 + e−2iθ3 . Since zH is on the first needle, by Corollary
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3.5, one of the numbers z1, z2, z3 must be e−2iθ1 . Similarly, one must be e−2iθ2 , and one
must be e−2iθ3 . But these must be distinct because of the restictions on j1, j2 and j3. So,
{z1, z2, z3} = {e−2iθ1 , e−2iθ2 , e−2iθ3} = {e2πij1/3n, e2πij2/3n, e2πij3/3n}. So, {zn1 , zn2 , zn3 } =
{e2πij1/3, e2πij2/3, e2πij3/3} = {1, e2πi/3, e−2πi/3}. So, pn(zH) = 0.

By varying j1 and j2 (and so also j3) we obtain in this way n2 distinct solutions to
the equation pn(z) = 0. Of course, because of the complex conjugate of z appearing in
(4.4), pn(z) is not a polynomial function of z. However, it is easy to see that there is a
degree-n polynomial function Pn of two variables such that pn(z) = Pn(z, z̄), and that
pn(z) = pn(z̄) = Pn(z̄, z). So if pn(z) = 0 then Pn(z, z̄) = Pn(z̄, z) = 0. Using
w as a variable that is independent of z, the condition pn(z) = 0 (for some z) implies
that the system of equations Pn(z, w) = 0 and Pn(w, z) = 0 has a common solution for
w. The resultant polynomial in z, obtained by eliminating w from the system of equations
must then vanish too. However, by the theory of resultants, this polynomial in z can have
degree at most n2, and so have at most n2 roots. So there are at most n2 solutions to the
equation pn(z) = 0. Since we have already identified n2 solutions, these must be all of the
solutions.
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