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Abstract: Concerning the Perspective 3-Point (P3P) Problem, Grunert’s system of three quadratic equations has a re-
peated solution if and only if the cubic polynomial introduced by Finsterwalder has a repeated root. This
polynomial is here shown to be obtainable from a particularly simple cubic polynomial with complex coeffi-
cients via a simple Mobius transformation. This provides surprising geometric insight into the P3P problem.
In particular, (1) the discriminant of Finsterwalder’s polynomial can be written using the formula for the stan-
dard deltoid curve, and (2) this discriminant, when regarded as a function of camera position, vanishes on a
surface that approaches a deltoid shape when the camera is moved infinitely far from the control points in a
direction perpendicular to the control points plane (the “limit case”). These two facts have been previously
reported, but obscure reasoning was required to establish them. In contrast, the present article uses the newly
discovered cubic polynomial to easily produce the first fact, which then provides a basis for better under-
standing the second fact. Also presented are quartic polynomials whose real roots are the P3P solution point
coordinates. A detailed geometric description of the P3P solution points in the “limit case” is also supplied.

1 Introduction

The classic problem known as the “Perspective 3-
Point (P3P) Problem” has been reformulated and re-
examined in a number of ways over the years. In its
original form (Grunert, 1841), a pinhole camera’s po-
sition and orientation are determined, though some-
what ambiguously, from the images in a photograph
of three “control points” with known locations in
space. To accomplish this, a system of three quadratic
equations must be solved for the unknown distances
from the camera’s optical center to each of the control
points.

As stated in (Haralick et al., 1994) (eqn. 1),
this system of equations, henceforth referred to as
“Grunert’s system,” is as follows:

53+ 53 — 25253 cos 0L = a?

53+ 57 — 25351 cos p = b? (1)
57+ 53 — 25150008y = 2.

Here, a, b and ¢ are the known distances between
pairs of control points; o, [ and vy are the angles be-

tween pairs of rays from the optical center to a control
point. These angles are also presumed to be known,
after computations involving the intrinsic properties
of the pinhole camera. The s; are the unknown dis-
tances that need to be determined by solving the sys-
tem. Each of the three equations in the system is just
an application of the Law of Cosines.

Unfortunately, the system typically produces mul-
tiple positive-valued solutions, as many as four of
these, only one of which corresponds to the camera’s
actual position. Understanding how many such solu-
tions result for given values of the parameters a, b,
¢, o, P and 7 has been the focus of much investiga-
tion over the past few decades. For example, (Faugere
etal., 2008), (Gao et al., 2003), (Rieck, 2015), (Rieck,
2018), (Rieck-Wang, 2021), (Wang et al., 2022). Sim-
ilar to the situation for a single polynomial in a single
variable, this question is closely related to determin-
ing which parameter values produce a repeated solu-
tion to the system, and this amounts to examining a
quantity that is computed from these parameters.

Grunert’s approach to solving the system Eq. (1)



leads to a quartic polynomial in a single variable.
While a repeated root for this polynomial is required
in order for the system to have a repeated solution,
this is not sufficient. Indeed, the so-called ‘side-
sharing” and “point-sharing” situations discussed in
(Wang et al., 2020) describe the cases where Grunert’s
quartic polynomial has a repeated root but Grunert’s
system does not have a repeated solution.

However, the cubic polynomial introduced by S.
Finsterwalder ((Haralick et al., 1994), eqn. 14) has a
repeated root precisely when Grunert’s system has a
repeated solution. This is proved in Section 4 of the
present paper. Prior to that, a connection is drawn, in
Section 3, between Finsterwalder’s cubic and a new
cubic polynomial having complex coefficients. The
discriminant of this latter cubic is easily expressed in
terms of the formula for a well-known quartic curve
called the “standard deltoid.” It is a hypocycloid curve
with three cusps. Aspects of this curve and its oc-
currence in “triangle geometry” are explored in Sec-
tion 5. Then, in Section 6, an important technical fact
is proved, concerning the non-trivial coefficients of
the new cubic polynomial.

As explained in (Rieck, 2014), (Rieck, 2018),
(Rieck-Wang, 2021), (Wang et al., 2022) and (Zhang-
Hu, 2006), Grunert’s system has a repeated positive
solution if and only if one of the possible positions for
the camera’s optical center is on the circular cylinder
through the circle containing the three control points.
This is the so-called “danger cylinder.” In this situa-
tion, any other points in space that correspond to other
real solutions to the system must occur on a surface
that has come to be called the “companion surface
of the danger cylinder (CSDC).” Together with three
special toroids, it separates space into regions corre-
sponding to differing numbers of positive solutions to
the system Eq. (1). (See (Rieck-Wang, 2021), Theo-
rem 4.)

Following the practice adopted in (Rieck, 2015),
(Rieck, 2018), (Rieck-Wang, 2021) and (Wang et al.,
2022), a special Cartesian coordinate system will be
used, though this in no way restricts the nature of the
problem. The three (real) coordinates are called x, y
and z. It will be helpful sometimes to let Z denote
z2. The coordinate system is chosen so that all three
control points are on the unit circle in the xy-plane. In
fact, the coordinates of these points are

(x7,55,0) = (cos¢;,sin9;,0) (j=1,2,3), (2)
with 01 + ¢2 +¢3 = 0. Such a coordinate system is

Table 1: Table of Symbols

Symbol Meaning
X, 9,2 Cartesian coordinates of a P3P solution point
Xj,Yj Cartesian coordinates of a control point (j = 1,2,3)
a, b, c distances between a pair of control points
d] 5 d2 y d3 alternative names for @, b, ¢
o, B, Y viewing angles
01,0,,63 alternative names for O, B, Y
S distance between a P3P solution point and a control
point (j =1,2,3)
Cj cos(0;) (j=123)
So 1—cicacs
S; 1—c§:sin2(e,) (i=1,2,3)
T; S§j—=2d3So/(d} +d5 +d3) (=123
T]2 h+hHh+13=
1 fc% fc% fc§+2c1c203
Z 2
C X~ 1y (a complex number)
g xj+iy; (=123
(xH;yH) (x1 +x2 +x3,y1 +y2 +3), the orthocenter
of the control points triangle
Cn xg+iyy =8i+86+8
Ay (CE S (SR SPI(SEREY)
G, H s 1 s J coefficients of Finsterwalder’s cubic polynomial
CL a complex number defined by P3P parameters only
(see Eq. (21))
T indeterminate for inhomogeneous polynomial
T1,T2 indeterminates for homogeneous polynomial
G1,02,03 indeterminates for homogeneous polynomial
A 03 / (o]
C() an arbitrary complex number
é;j a root of the cubic polynomial ’C3 — Co’cz +
Cot—1 (=123
(Dj asquarerootofgj (j=1,2,3)
X0 o]+ 03
Xj 20;—%0 (i=12,3)

A (& -81)E-81)E —&)
AL A when QO is QL
DC the “danger cylinder” (x2 + y2 =1, 7 free)
CcSDC

the “companion surface” of DC

always possible to obtain from a standard coordinate
system, using an easily determined affine transforma-
tion. Details can be found in these other papers.

Also, following the practice introduced in (Rieck-
Wang, 2021), it has proven to be extremely helpful to
identify the xy-plane with the complex number plane



by setting

C=x+iy, 3)
where i> = —1. In this way, the control points become
identified with the unit complex numbers

Ci=xj+iy; (j=1,2,3). 4

Notice that {; = 1/{; (j=1,2,3) and that ;{83 = 1.
Defining

Co=xu+iyn =01 +0+C3, (5)

itis straightforward to check that (g is the orthocenter
of the control points triangle, i.e the triangle having
€1, {» and {3 as vertices. (The line containing (g and
€1 is perpendicular to the line containing {; and 3,
and so forth.)

The CSDC surface is defined by a polynomial
equation in x, y and Z. The highest degree of Z here
is 4. See (Rieck-Wang, 2021), Lemma 4. When ex-
pressed as a polynomial equation in x, y and z, the
(overall) degree is 12. See (Wang et al., 2022), Propo-
sition 1. A curious fact concerning the CSDC surface
is that when moving far from the control points, along
a direction perpendicular to the plane containing the
control points, the cross sections of this surface, cut-
ting it with planes parallel to the control points plane,
tend towards the standard deltoid curve. This claim,
which was previously difficult to prove, is more eas-
ily established here, in Section 7, using the deltoidal
nature of the discriminant.

Throughout this paper, (i, &, {3, g, a, b and
¢ are assumed to be fixed. When discussing a “con-
stant,” it will be understood that this might depend
on these numbers. However, other quantities, such as
o, B, v, s1, s2 and s3, will sometimes be regarded as
variables, varying as functions of the changing coor-
dinates (C,z) of a moving camera’s optical center. For
the purposes of our discussion, a “constant” will never
depend on these potentially varying quantities. Table
1 inventories most of the mathematical notation used
in this document.

2 Main results

The cubic polynomial introduced by S. Finster-
walder is of concern in this paper. Its connection with
the standard deltoid curve is captured in the first main
result, as follows.

Theorem 1. The discriminant of Finsterwalder’s cu-
bic polynomial Eq. (28) is equal to a nonzero constant
times A%, where

A = GG 4G +8)+180L T — 27, (6
and where (p is the complex number defined in
Eq. 21).

This is proved in Section 3.

Some of the importance of Finsterwalder’s cubic
in relation to Grunert’s system can be seen in the next
result.

Theorem 2. Grunert’s system (Eq. (1)) has a re-
peated solution if and only if Finsterwalder’s cubic
polynomial (Eq. (28)) has a repeated root, and so, if
and only if its discriminant vanishes.

This is proved in Section 4.

The quantity {; (which depends on o, B and 7)
can be expressed in a different manner, based on the
Cartesian coordinates of any of the (real) P3P solution
points, as follows.

Theorem 3.

Go= 8 =20+ (G0 1)(& ~Lul—C+Cn) /2,
(7
where { = x+1iy, and (x,y,z) are the coordinates of
any (real) solution point for the P3P Problem (i.e a
possible position in space of the camera’s optical cen-
ter).

This is proved in Section 6.

The “limit case” discussed in Section 7, and in
(Rieck, 2015), is particularly easy to analyze, and pro-
vides important insight into the general case. Here
are some newly discovered facts concerning the (real)
P3P solution points in the limit case. (“Real” here
means that the coordinates x, y and z are real num-
bers.)

Theorem 4. Consider the limit case, that is, the lim-
iting situation as |z| — oo.

1. If A% < 0, then the orthogonal projection of the
(real) P3P solution points onto the xy-plane are
the four points ¥ ; defined in Section 5 (upon set-
ting Co to C1). These points are inside the stan-
dard deltoid curve, but not on the unit circle. They
form an orthocentric system whose orthic triangle
has vertices that are the negative conjugates of the
roots of the cubic polynomial Eq. (23).



2. Ifinstead A% > 0, then the projections of the (real)
P3P solution points are just the two X,; for which
x3 —2); = Cr. They are outside the standard del-
toid curve.

This is proved in Section 7.

3 A Special Cubic Polynomial

The method of Finsterwalder and the
method of Grafarend-Lohse-Schaffrim (Haralick
et al., 1994), as well as the method of Persson-
Nordberg (Persson-Nordberg, 2018), all begin with
essentially the same reasoning and produce essen-
tially the same cubic polynomial. An equivalent
approach will now be presented, one that leverages
the symmetry of the system. This leads to a useful
family of homogeneous cubic polynomials, one of
which has a particularly simple, symmetric form,
singling it out for special attention. To allow for
easier symbolic manipulations, going forward, let us
rename cosQ., cos, cosY, a, b and ¢ as ¢y, ¢, ¢3, di,
d> and d3, respectively.

Define three quadratic polynomials in 51, s> and 53
as follows:

2, 2 2

pi(s1,82,83) = s5+55—2c1 5083 —dj,

R S 2
p2(51,82,83) = s3+s7—2cas351—d;,  (8)

2, 2 2

p3(Sl,S2,S3) = SI+S2—2C3S152—d3.

Solving Grunert’s system means finding values for sy,
s> and s3 that cause these three polynomials to si-
multaneously vanish. A general linear combination
of these polynomials is the following:

p(01,02,03;581,52,83) = O1p1(s1,52,53)
402 pa(s1,52,53) + 03 p3(s51,52,53),

€))

for parameters 61, 6, and G3.
Of particular interest are the polynomials whose
constant coefficient vanishes, that is,

dici+d36,+d303=0. (10)

In this case, the equation p(G1,02,03;51,52,53) =0
can be written in matrix form thus:

A1 B3 B 81
[s1 s2 s3] | Bs A B
B, By As 53
(11)
where A =0, +063,A) =63+ 61,A3 =01+ 6, and
Bj=—cjo;(j=1,2,3).

All three of the methods mentioned earlier now
essentially make the further assumption that the G;
have been chosen so as to make the determinant of the
3 x 3 matrix vanish. This amounts to solving a cubic
equation, as will be discussed next. In various ways,
the three different methods then proceed to produce
all of the positive solutions to Grunert’s system.

The 3 x 3 determinant is a homogeneous cubic
polynomial in the G;, specifically,

(1=c})ot(02+03) + (1—c3)05(03 +01)
+(1- C%)G%(Gl +(52) +2 (1 —€1¢2¢3) G10203.
(12)

However, under the continuing assumption Eq. (10),
we can reduce this to a homogeneous cubic polyno-
mial in just two indeterminates (unknowns), in many
different ways. Let us carefully examine two such ap-
proaches. Later on, we will see how these are related,
and will observe that the indeterminates of either of
the two homogeneous polynomials are merely linear
transformations of the indeterminates of the other ho-
mogeneous polynomial.

One way to proceed is simply to use Eq. (10) to
eliminate one of the 6; from Eq. (12), and thereby
obtain a homogeneous cubic polynomial in the other
two Gj.l For instance, if we eliminate G, by set-
ting it equal to —(d?0| + d303)/d3, we obtain dy*
times the following homogeneous version of Finster-
walder’s cubic polynomial:

Gois + Ho 63 + 6703 + Jo3, (13)

where

G = &d3(1-c3)—d3(1-c3)],

H = di(dy—d})(1-c3) +d3(d5 +2d7) (1-c3)
+2d§d§ (C16‘26‘3 — 1),

I = di(dy—d3)(1-c}) +di(di +2d3) (1 - c3)
+2d%d§ (616‘203 — 1),

J o= di[di(1-c)—d5 (1-cf)].

This agrees with (Haralick et al., 1994), eqn. 14, upon
setting A = 03/0].

We now turn to a different method, one that em-
ploys substitution rather than elimination. Instead of
eliminating one of the G;, we can introduce two new
quantities (indeterminates), T; and T», and linearly re-
late these to the G; by setting

Gi = pinTi+unT (i=1,2,3), (14)

IThis resulting polynomial can then be solved by a classi-
cal method. Then, using the obtained values for the G,
the quadratic polynomial p(G1,02,03;51,52,s3) factors as
a product of two linear factors in sy, 57 and s3.



for constants y;;, subject to two restrictions:
dimj+d i+ dim; =0 (j=12). (15

To simplify the notation, let §; = 1 — c? (j=1,2,3)
and So = 1 — cicoc3. The determinant Eq. (12) can
then be written thus:

303
Y ¥ viisit i, (16)
i=0 /=0

where

Voo = 2u1ip21M31,

Vo = uq (21 +s1),

Voo = w3 (u3+p),

vos = 3 (),

Vio = 2(uotiu31 +pitops1 + 21 H32),
Vit = 8 (w24 p32) + 2unpn (1) + 1),
Vi = 5 (uz2+pi2) + 2uip (31 + ),
vis = 15 (U2 +m2) + 2usiuz (i + o),
Voo = 2(ui1toopse + izt 32 + Hi2t231),
Var = 1, (uar 1) + 2unipn (o2 + p32),
v = iy (uzr ) + 2unp (32 + p12),
vas = By (unn 4 por) + 2us1us (2 + ),
Vo = 2uipnus,

Vi = (),

Viy = (st i),

Vis = (o + ).

a7
At this stage, we introduce special choices for the
values of the y;;, as follows:

= 1/(G-8),

wr = 1/(G—-8),

3 = i(Cz—Cl), (18)
2 = g = —ui /G,

wo = 1 = —u/l,

w2 = mr = —m1/G.

These are reasonable choices for the parameters be-
cause of the next claim.

Lemma 1. The choices for the u;j in Eq. (18) satisfy
the two conditions Eq. (15), and so are suitable for
use in Eq. (14) so as to ensure Eq. (10).

Proof. d} = ($2—3)(8o —C3), and similarly for d3
and d%. It is straightforward to check that d% i+
d3 oy +di 3 = 0 and dipns + dapn + djuz, = 0.

O

Define

Ag = (L-8)(G-8)(G-&). 19

Lemma 2. Ay is purely imaginary.

Proof. Ay = (1/8 —1/81)(1/8 —1/81)(1/C —
1/G) = —An/(6i160)* = —An. O

Several other useful properties of the parameter
choices are now easily checked.

Lemma 3. The choices for the u;; in Eq. (18) satisfy

the following equations:

pimipsr = —1/Ay , popnuz = 1/Ay,
15y (21 +p31) = w3y (31 + 1) =

13, (un1 +p21) = 1/Ag
135 (22 +u32) = 13, (32 +p12) =
13, (12 +p22) = —1/Ay .

Proof. The first two equations are immediate conse-
quences of the definitions and Lemma 2. Now, | +
s = 1/(G1=C3) +1/(Ga=C1) = (C2—8)/[(C1 -
§)(G2 = &i)), and so, i (u21 +pa1) = [1/(G —
Q) (G~ 83) /(G — 6)(G — &) = 1/Au. Two
similar equations follow by symmetry. The remain-
ing equations to be proved follow by conjugation and
by Lemma 2. O

An important quantity for analyzing the P3P Prob-
lem is the Gramian determinant associated with the
unit vectors pointing from the camera’s optical cen-
ter to the control points. Following (Rieck, 2018),
(Rieck-Wang, 2021) and (Wang et al., 2022), this
quantity will be denoted by 1, and can be computed
thus:

N? = S1+8+83-28 =

2

2
1—C%—C2—C%+2616‘2C3. (20)

The following quantity, which was introduced in
(Rieck-Wang, 2021), will also be needed here:

Go=n2[@G+2808+ o
(G +285)S2 + (G +283)S5 — 28uSo .

We are now prepared to produce an interesting cubic
polynomial that is closely related to Finsterwalder’s
cubic polynomial.

Lemma 4. Using the values from Eq. (17) and
Eq. (18), the summation Eq. (16) reduces to

M?*/Aw) [T — Gt + 4t 13 — 1)



Proof. The coefficient of Sl’c? in Eq. (16) is vo; =
p3y (21 + p31) = 1/Ay.  Similarly for S,t7 and
S313. The coefficient of Syt is Voo = 2u1121431 =
—2/Ag. Combining these, we see that the coefficient
of T} is n?/Ap.

The coefficient of S1T3t, is  vii
w(e + pn) 4+ 2mpn(un +opn) =
(uny/m2) iy (w2 + p32) + 2(ua/pn) g, (21 +
w) = G-+ 2(-8)(1/Ak)

—(€2 + 281)/Ay.  Similarly for St}1, and
531%12.

The coefficient of SyT3T, is Vip = 2 (ur2t21u31 +
pipms1 + unpipze) = 2(ma/mn + pn/un +
px/m3n) pipipst = —2(8 + &+ G)(—1/Ay) =
2Ly /Ag. Combining, we see that the coefficient of
’E%‘Cz is —T]2 CL/AH-

These facts, the preceding lemmas, and conjuga-
tion can now be used to quickly determine the other
coefficients. Notice that vo; and v3; are conjugate, as
are vijand vo; (j=0,1,2,3). O

Because of its special form, the homogeneous cu-
bic polynomial (in T; and 1,)

— (:L’C%Tz —|—§’CIT% — ’C% (22)

has an associated inhomogeneous cubic polynomial
(in7)

TP+t (23)
with a special form for its discriminant, specifically,
Eq. (6). This results from the following general claim,
whose proof is simply a matter of substituting specific
coefficient values into the formula for the discrimi-
nant of a general cubic polynomial, and which is dis-
cussed in (MacKenzie, 1993).

Lemma 5. Given a fixed complex number {y, and an
indeterminate 7, the discriminant of the cubic polyno-
mial

T ot +Lot—1 (24)

G4 +8)+185% —27. (25

Curiously, the equation for the standard deltoid
curve, expressed in terms of a single complex vari-
able C is

-4 +0)+18(C—27 = 0. (26)

(See (Patterson, 1940), eqn. 3.3.) Actually, this curve
has previously been studied as the discriminant of the
cubic polynomial Eq. (24), with { in place of {y. This
and related ideas are explored in the next section.

One of the chief goals of this paper, namely prov-
ing Theorem 1, will now be accomplished via a series
of lemmas. Towards this end, it will be helpful to in-
troduce the following row vector:

M=[1/6G-%) 1/C-8) 1/(%-8&) ]|
(27
Lemma 6. Let quantities q1, q» and g3 be such that
q1+92+q3 =0. Then,
Ay [ qi/di @/d ¢/d3 ] =
& -G
= M
(a1 @ ]| & -G [M}
&G -G

Proof. The first entry in the array on the right
side of the equation to be established is (q18; +
0l +3383) /(G- 6) — (016 + 28+ 4383) /(G —
C2). which equals [§1/(6—8) =8 /(G— &) g1 +
[82/ (G —8) = G/ (C3 = C2) g2 + [C3/(Cs = Ca) —

C3/(83 —2)] g3, which equals [§1 (83— C2) = Ci (83 —
0)]ai/d? + (GG — &) — GG — &)]ge/d +
(GG — &) — GG — &)]gs/df, which equals
(GG — &) = GG — &) + &G — &lslai/dr,
which equals —Ag q;/ dlz. Similarly for the second
and third entries in the array. O

Lemma 7. Setting

0 —d3/d3 1}

[01 ()] 63]2[11 Tz][l —d%/d% 0

causes Eq. (12) to become 1 /dgt times Eq. (13), but
with &3 replaced with 1, and G| replaced with T,.
Moreover,

0 —di/d3 1 _ -1 [d 0]

o] - w0 ]
& ¢

HEEI e

—1[d 0 L-G G- M

AH{O d12:| L-G G- Czl{M]'

Proof. The first claim just amounts to the computa-
tion that results in Eq. (13), but with different variable
names. The second claim is just a double application
of Lemma 6. O



Lemma 8. Consider the following two linear trans-
formations of indeterminates:

(4 %)=

-1 i 0 L-G G-G
[‘Cl ‘Cz][(; d%}[cz_gl CI_CZ]7

(o o o] =[5 %[5

When ©'; is used in place of 6; (j=1,2,3) in Eq. (12),
and expanded in terms of T\ and T, the result is

(*/An) 7 = Gty + Lnf — 5.

Then, when this is expanded in terms of T and T, the
result is

(1/d3) GV + HUity + 11,15 +J13 ).

Proof. The first claim is just a restatement of
Lemma 4, in matrix form, but using T}, 75, 6/, O
and Gg in place of 1y, T2, 61, 62 and O3, respectively.
Next, by Lemma 7,

[of o o] =

0 —d3/d3 1
TT T2
[ ] 1 —d}/d3 0 |-
and the second claim now follows too. O

We are now ready to establish one of the main re-
sults in this paper.

Proof of Theorem 1. Lemma 8 shows that a linear
transformation of indeterminates exists that converts
the homogeneous cubic polynomial Eq. (22) to the
homogeneous cubic polynomial Eq. (13), and vice
versa. Thus, a Mobius transformation of its indeter-
minate exists that converts the inhomogeneous cubic
polynomial Eq. (23) to a nonzero constant times Fin-
sterwalder’s cubic polynomial,

G\ +HMN + 1A+ J, (28)

and vice-versa. Theorem 1 follows immediately from
this fact and Lemma 5. O

4 Repeated P3P solutions

While the claim made in Theorem 2 seems to have
been recognized by some, the author is unaware of
any formal proof of it in the literature, apart from

an appendix in (Rieck-Wang, 2021), which involves
several tedious lemmas. A smoother and more direct
proof will now be presented.

We will continue using the notation in Section 3,
but will also use some of the notation in (Haralick
et al., 1994) by setting u = s1/s3, v=1s2/53 and A =
63/0;. Clearly, Eq. (9) implies the following:

Avu® +Av? + A3 +2B1v+2Bou+2B3uv = 0. (29)

As was done previously, substitute —(d12(51 +
d303) /d3 and thus treat the coefficients of Eq. (29)
as homogeneous linear functions of ¢ and 63. Go-
ing a step further, let us dehomogenize this by set-
ting o; = 1, and so, 63 = A, thereby obtaining a cu-
bic polynomial in A. In this way, we essentially ob-
tain Finsterwalder’s equation, (10) in (Haralick et al.,
1994). This is a one-parameter family of quadratic
equations in u and v, where A is the parameter. The
c¢j and d; here are presumed to be fixed. These equa-
tions correspond to a one-parameter family of conic
sections in the uv-plane, though some are degenerate.

If fact, each degenerate conic section is a pair of
lines, and corresponds to a value of A that is one of the
three roots of Eq. (12) using6; = 1,063 =Aand 6, =
—(d? +d3\)/d3. In special cases, the “pair of lines”
might actually be just a single line, but counted twice
in the usual algebraic geometric sense. Such cases
will be ignored here, but can be treated as limits of
“generic” cases. Likewise, the rest of the discussion
in this section will be generic.

Following Finsterwalder’s method, four values
(possibly complex) for the pair (u,v) are found that
satisfy all of the equations in the family, correspond-
ing to four points (possibly complex) on all of the
conic sections. By Bézout’s Theorem, there can be
no other such points. Let (u1,vy), (u2,v2), (u3,v3)
and (u4,v4) denote the four values of (u,v). We
will speak of a “pairing” of the four points as a
partitioning of them into two sets of size two points
each. Note that there are three pairings. Each of the
three degenerate conic section in the family of conic
sections produces such a pairing by putting two of
the points in the same set if they are on the same
line of the degenerate conic section. The next result
establishes a converse to this.

Lemma 9. Given any pairing of the four points, there
is a root to Eq. (12) (using 61 =1, 63 = A and 6 =
—(d? +d2\)/d3) such that the corresponding degen-
erate conic section has any two of the four points on



the same line if and only if they are in the same set of
the given pairing.

Proof. The general equation for a conic section in
the plane involves six coefficients. However, scaling
the equation by a constant factor does not change the
curve it describes. Thus, there are five degrees of free-
dom in choosing a (possibly degenerate) conic sec-
tion. But, if this curve is also required to pass through
four specified points, then, this imposes four linear
conditions on the coefficients. Working generically,
we assume these to be linearly independent condi-
tions. This reduces the number of degrees of freedom
in the selection of a conic section to just one.

The situation in the Finsterwalder method is that
we have a one-parameter family of conic sections that
all pass through four particular points. By continu-
ity and dimensional reasoning, there can be no other
conic sections that pass through these four points.
Now, consider any pairing of the four points. Each of
the two sets in the pairing defines a line, and together
these constitute a degenerate conic section. This conic
section must be in the family of conic sections. Also,
the degenerate conic section corresponds to one of the
roots of the cubic equation.

O

We are now prepared to prove Theorem 2.

Proof of Theorem 2. From any value of (u,v), a value
for (s7,s3,53) is uniquely determined via equations
(4) and (5) in (Haralick et al., 1994). Moreover, the
value of (s1,s2,s3) can then be determined up to an
overall factor of £1. The two resulting values of
(s1,52,53) can be practically regarded as “the same”
solution to Grunert’s system. Conversely, a value for
(s1,52,53) produces a unique value for (u,v).

Now, suppose that there is a repeat among the
(uj,vj). Generically, there will be three distict
(uj,vj), and, without loss of generality, we may as-
sume that (u1,v1) = (u2,v2), but that (uy,vy), (u3,v3)
and (u4,v4) are distinct. A small continuous pertiba-
tion of the P3P paramters (the c; and d;) will slightly
alter (continuously) the four ordered pairs, (u;,v;),
and generically, the resulting ordered pairs, (u;,V")
(j=1,2,3,4), will be distinct. But taking a pairing of
these four ordered pairs, and the corresponding pair-
ing of the four points in the uv-plane, and by also con-
sidering the pair of lines defined by this, we obtain a

degenerate conic section in the family of conic sec-
tions, and so too, a corresponding root of the cubic
polynomial in A.

Here are the three possible pairings:

{{hv)), (g, ), {(u5,v3), (Vi) } )

{{(h,v)), (5,v3) 1, {(u,v5), (Vi) } }

{{Qh,v), (v b, {5, v5), (u5,v5) } -
By reversing the continuous perturbation, and consid-
ering the effect on the pairings, there will result a re-
peated pairing (the second and third pairings). But,
this implies a repeated root to the cubic polynomial
in A. Conversely, if the cubic polynomial has a re-
peated root, the Finsterwalder’s method clearly leads

to a repeated solution to Grunert’s system.
O

5 Triangles and deltoids

Throughout this section, the focus is on construc-
tions in the complex plane. R(t) and J(t) are used
to denote the real and imaginary parts of a com-
plex number 7, respectively. The investigation here is
chiefly concerned with the cubic polynomial Eq. (24)
and its discriminant Eq. (25).

Let &, & and &3 denote the three roots of the
cubic polynomial Eq. (24). Clearly, & + &, + &3 =
o, £283 +8&381 + 818 = o, and §; &, &3 = 1. Let

A=(E—-E1)E—E1)(& - &), (30)

and notice that A> equals the discriminant Eq. (25),
and that this is real. The occurrence and study of poly-
nomials of the form Eq. (24) can be found in earlier
research efforts such as (Gongopadhyay et al., 2015),
(MacKenzie, 1993) and (Patterson, 1940), as well as
Chapter 19 of (Morley-Morley, 2014).

Two special values for {y are of importance in the
study of P3P. First, when {y is taken to be {y, we
see that &; = {; (a control point; j = 1,2,3). Second,
when instead £y is taken to be {;, as will be the case
in subsequent sections of this document, insight can
be gained into the nature of CSDC and the limit case
of the P3P Problem.

From Theorem 4 of (MacKenzie, 1993), we can
say that at least one of &, &, and &; must be on the
unit circle, and that all three are on the unit circle if
and only if the A2 <0. Geometrically, this condition
means that { is on or inside the standard deltoid given



by the equation A?> = 0. In any case, without loss of
generality, assume henceforth that &; is on the unit
circle, i.e. [&;| = 1.

When all three roots are on the unit circle, and
are distinct, it is handy to regard them as the vertices
of a triangle, and it is then straightforward to check
that (g is the orthocenter of this triangle. Moreover,
as indicated in Theorem 6 of (MacKenzie, 1993), |o|
is less than, equal to, or greater than one depending
on whether the triangle is acute, right or obtuse. For
P3P, this is significant for the two special cases, when
€o = ;. and when {y = {g.

A useful Mobius transformation in the present
context is T = (iw+1)/(iw — 1). As explained in
(MacKenzie, 1993), the polynomial Eq. (24) becomes
—i(iw — 1)~ times the following:

() ()

The coefficients of Eq. (31) are real numbers. More-
over, the Mobius transformation maps the real line (in
the w-plane) to the unit circle (in the T-plane). One
can check that the discriminant of this polynomial is
—4A?/3(Lo)*. (See page 243 of (MacKenzie, 1993).)

When AZ < 0, Eq. (31) has three real roots, cor-
responding to the three roots of Eq. (24) on the unit
circle. However, when Az > 0, Eq. (31) has only one
real root. It also has two distinct complex roots that
are complex conjugates of each other. Pulling these
three roots back to the T-plane, we find that the roots
of Eq. (24) have the following form: |§;| =1 (by as-
sumption), & = &r and &; = & /r for some r > 0 and
some & with |[§] = 1. Since r # 1, by symmetry, we
may assume that r > 1. Since ;&3 = 1, we see that
& =1/8.

A strong connection will be made in Section 7
between the solutions to the P3P Problem in the so-
called “limit case,” and upcoming notions in planar
geometry discussed in the present section. To make
this connection, some possibly new results in planar
geometry will now be developed. Let ®;, ®; and ®3
be square roots of &;, & and &3, respectively, cho-
sen so that ;3 = 1. Let 30 = 01 + 0, + 3, and
X =20;—%o (j =1,2,3). As points in the com-
plex plane, notice that ®; is the midpoint of )y and
x; (=1,2,3). Also, —®; is the midpoint of ), and
X3, and so forth. When A2 >0, we may assume that
o, = op and @3 = ®/p for some ® and p with |0 =1
and p > 1. Since @003 = 1, ®; = 1/@°.

Lemma 10.

1. When A* <0, the line containing Yo and j inter-
sects the line containing the other two \’s at the
point —&; (j=1,2,3).

2. When instead A% > 0, and making the above as-
sumptions, —ETQ and —F; are still the intersection
points described in the A? < 0 case, and —a still
lies on the line through Yo and .

Proof. First assume that A> < 0. The line through ¥
and % consists of points z for which (Z—7%0)(z—%1)
is real, and this is so if and only if YoX1 —Xoz— %12
is real. Observe that i3[xox1] = iS[(®1 + @2 +
®3) (0 — 0 — 03)] = O0; — B0 + ®;03 — DO3.
Setting z = —&; = —m;2, we see that i3[—¥oz —
X17) = 010 — 0wy + O 03 — 0]z = O /@3 —
®1 /03 +®1 /0, — /. Since, || = |o3| =1, we
find that 3 [Xox1 —Xoz — x12] = 0, and so, —&; is on
the line containing ¥ and ;.

Similarly, z is on the line through %> and y3 if
and only if X2x3 — X2z — X3Z is real. Observe that
iS[2xs] = iS[(—®r + 0 —@3)(—0; — )+ 03)] =
0 — 00, + 0;03 — O]03.

Using z = =& =
—®;? again, we see that i3[—¥2z—X37] = ®;°0; —
o}, — B2 03 + 0703 = 07 /03 — 01 /03 — 01 /0 +
®; /. So again, since, || = |®3| = 1, we find that
S[2x3 — X2z — %32) = 0, and so, —&; is on the line
containing > and 3. Symmetrical reasoning com-
pletes the A> < 0 case.

Now assume that A?> > 0 instead. Here we have
|| =1, but®; = 1/®3 and @3 = 1/®,. Rechecking
the earlier computations it is quickly seen that —&;
is still on the line containing X and %;. The claims
concerning fg and fg can also be readily checked.
O

Figure 1 shows an example for the A% < 0 case.
The deltoid curve and unit circle are drawn here.
The diamond (tilted square) shows the position of
the point {y. The solid circular dots mark the
points &;,&,,E3. The small squares mark the points
+m1,1+0;,+w®3;. The small triangles mark the points
%0,%1,X2,%3. Finally, the open circular dots mark
the points ,a7 fg, fg. Dotted lines show the
collinearity of various points.

Lemma 11. If A> < 0, then g is the orthocenter of
the triangle with vertices ®1, @y, ®3; X1 is the ortho-
center of the triangle with vertices ®, —Wy, —W3; X2
is the orthocenter of the triangle with vertices —®y,



Figure 1: The A? < 0 case

Wy, —W3, and Y3 is the orthocenter of the triangle
with vertices —®1, —,, ©3.

Proof. The line through ®; and % is parallel to the
line through the origin and the point @, 4+ 3. The
line through m, and s is parallel to the line through
the origin and the point ®; — 3. The first two lines
are perpendicular to the second two lines if and only
if (02 4+ 3)/ (2 — ©3) is purely imaginary. This is
so if and only if (@, + ®3)(®; — ®3) is purely imag-
inary. But this quantity equals ®;®3 — W, ®3, which
is purely imaginary. By symmetry, we see that ) is
the orthocenter of the triangle whose vertices are o1,
> and ®3. Similar reasoning establishes the other
claims. O

Lemma 12. If A’> < 0, then the set of points
{%0,%1,X2,%3} is an orthocentric system, and the
points —a, —g and —@ are the vertices of its or-
thic triangle.

Proof. Reasoning as in the proof of Lemma 11,
examine (Xo —%1)(X2 —%3)- This equals 4(w; +
®3)(®; — ®3), which is purely imaginary. Hence the
line through 7y and 7 is perpendicular to the line
through %, and 3. By symmetry, the four points
x; ( =0,1,2,3) form an orthocentric system. By
Lemma 10, the points —&7 (j =1,2,3) are the ver-
tices of the orthocentric system’s orthic triangle. [

Lemma 13. If A> <0, then x5 -2 = o (j =
0,1,2,3).

Proof. %3 — 2X0 = (01 + 0 + ©3)> — 2(1/e; +
1/ +1/03) = (0] + @+ ®3)% —2(0,03 + 030 +
®1) =& +& + & = . Similar reasoning estab-
lishes the other claims. O]

Figure 2 is similar to Figure 1, but is for the A% > 0
case. Here —& (the small open circle on the left) now
lies on the line containing ) and ¥ (the triangles on
the left), but not on the line containing > and X3 (the
triangles on the right). On the other hand, —&, and
—&; (the other two small open circles) are again each
the intersection point of two lines, each line contain-
ing a pair of the x;’s. The dashed line demonstrates
the next result.

Figure 2: The A2 > 0 case

Lemma 14. [f A> > 0 and |&;| = 1, then 0,w,, s,
—y and —;3 are collinear. Moreover, the line con-
taining these points is parallel to the line containing
X0, X1 and ®1, as well as the line containing X2, X3
and —;.

Proof. As previously indicated, we may assume that
0] = 1/0?, 0, = wp and 03 = ®/p for some p > 1
and some ® with |®| = 1. The points 0, ®,, M3, —0
and —mj3 are clearly collinear, and their common line
£ is in the direction +.

The line containing }o and ) is parallel to the line
through the origin and the point o — %1 = 2(®, +
®3) = 20(p + 1/p), which is the line ¢. The line
containing ¥, and 3 is parallel to the line through
the origin and the point ¥ — %3 = 2(wp — @3) =
2w(p — 1/p), which is also the line £. O



Lemma 15. IfA? > 0 and || = 1, then X3 — 2¥o =
X1 — 21 = Co, but X3 — 22 # Co and X3 —2%3 # Co-
However, [x5 — 2% +%3 — 2X3/2 = Co-

Proof. Continue the assumptions at the start of the
proof of Lemma 14. 3 —2%o = (1/@’ + op +
®/p)* = 2[a’ +p/o+1/(0p)] = 1/0* + 0®p* +
©*/p* + 2p/0 + 2/(0p) + 260 — 20* — 2p/® —
2/(0p) = 1/0* +a?p* +@?/p*> =& + & +& = Go.
A quick inspection shows that we get the same result
if we begin with y; in place of ).

X2 — 212 = (—1/& + 0p — 0/p)? — 2[-&® +
p/o—1/(op)] = 1/0* + 0*p* + 0 /p> — 2p/0 +
2/(0p) — 207 4 207 — 2p/w + 2/(0p) = 1/w* +
0’p? + @?/p? —4p/w + 4/(wp), which does not
equal o, since p? # 1. Likewise, X3 — 25 = 1/0* +
0?p? +w?/p> +4p/w—4/(wp), from which the rest
follows. O

6 The quantity (;

The quantity {; defined in Eq. (21) first appeared
in (Rieck-Wang, 2021), where it was proved to equal
a quantity that depends explicitly, and in a simple
way, on the coordinates { (= x+iy) and z of the cam-
era’s optical center. (See Theorem 1 in (Rieck-Wang,
2021).) In the present paper, this is Theorem 3. The
goal now is to prove this claim in a manner that is
more direct and revealing than the approach taken in
(Rieck-Wang, 2021).

It will be helpful to define

Ty = 8;—2d3So/ (di+d3+d3) (j=1,2,3). (32)

The polynomials in ¢y, ¢ and c¢3 described in Sec-
tion 5 of (Rieck, 2018) are just the linear combina-
tions 71, T, and T3 with constant coefficients (that can
depend on the constants {;, {; and {3). These are
the polynomials of the form (4) (there) that satisfy
(5) (there), which have special properties. Notice that
n2 =T + T> + T3. Other quantities of interest, seen in
(Rieck, 2014), (Rieck, 2015) and (Rieck, 2018), are
d3S> — d3S3, d3S3 —d3Sy and d3S) — d3Ss.

Lemma 16.
d28,—d3S; _ dT-d3T;
2 = 2 =
1-4,6+830 -6
G (6-G)

and similar equations obtained by cycling the indices.

Proof. It is straightforward to check that
d3S, — d3S3 = diT, — d3Ts. Now, (3
G)d3Th — d3Ts) = CH (G — )6 — &)
) — (G -8)G -8B = [(G—6)(1 -
Q) /(LT B+ (G — G)(1 — GG/ (G T,
Also, (1 -84+ 36 -8) = (1-48)* T +
-GG +25) + GG +20) - QB +[1 -
6 (G +2G) + C%(ng +283) — §3] T3, which also
equals  [(G5 — §2)(1 — §383)* /(G2 + [(C2 —
&) (1= 683)* /(B8 T. O

(6]
(8

Lemma 17.
d3S2ﬂ_2d2S3 - C2€1C3 { [ai B az ¢ -20)
LT 201 + [R5

LG -wi-T+ T
~LE -Wl-t+ o]}

and similar equations obtained by cycling the indices.

Proof. Using ¢ = (s5 + 53 — d7)/(2s253), etc.,
we find that S; = 1 — 2 = (25353 + 24353 +
2d}s3 — dj — 55 — s%)/(4s3s3). By considering
the volume of a tetrahedron, in a couple ways,
it can be seen that M? = (did3d3z*)/ (4s}s3s3).
This is proved in Lemma 2 of (Rieck, 2014).
Therefore, (d3S> — d3S3) /M = [2(d3 — d3)s3s5s3 —
Bsi53 + d3stsd + disis? — d3sish + 23333 —
s3) — d3d3s3 +d3dss3] / [d}d3d3z2]. Substituting us-
ing s7 = ((-C)(E—-8&)+2% ete, df = (G —
C3)(C2—C3), ete., and §; = 1/C;(j = 1,2,3) estab-
lishes the formula in the lemma. O

Proof of Theorem 3. Define two cubic polynomials,
in a complex variable T, as follows:

p(t) = P-4 +4T—1
g(v) = TG+,
where { is the right side of equation Eq. (7). p(t)
is just Eq. (23). The goal now is to prove that p(7)
and ¢(t) are really the same polynomial, and therefore
that {; = {;, which is the claim made in Theorem 3.
By Lemma 16 and Lemma 17, p({;) = ¢(C)),
and by symmetry, p(&) = (&) and p(Gs) = g(Ca).
Clearly, p(0) = ¢(0). Since two cubic polynomials
agree at four values, they are actually the same poly-
nomial. This establishes Theorem 3.
O



7 P3P solutions in the limit

We will now focus on the so-called “limit case,”
studied in (Rieck, 2015). The idea is to consider what
happens as the Cartesian coordinate z of the camera’s
optical center (a P3P solution point) becomes very
large in relation to |{y| and |C|. In this case, the right
side of Eq. (7) tends to {2 —2{. We may imagine a
collection of “limit points,” where z = oo, for which
the right side of Eq. (7) equals {2 —2C.

Formally, this means partially compactifying real
space in a manner that is not one-point compactifica-
tion, nor is it the compactification that results in pro-
jective space. Instead, we are simply compactifying
each “vertical line” (constant-( line) by adding a point
at infinity. The plane consising of all of the points at
infinity constitute what is meant by the “limit case”
here.

The discriminant A? given by Eq. (6), equals zero
on the “danger cylinder,” which is the circular cylin-
der given by CZ =1 A% also tends to zero on the
(non-circular) cylinder given by the formula for the
standard deltoid Eq. (26), as z tends to infinity. This
is easily understood, because in the limit as z — oo,
we have {; = {2 —2C, and because of the following
fact.

Lemma 18. The mapping {— (2 —2C, in the complex
plane, takes points on the unit circle and points on the
standard deltoid to points on the standard deltoid. No
other points are mapped to the standard deltoid.

Proof. Substitute Cz — ZE for o in Eq. (25) to get
(& - 22)2@2 —20)* —4[(C> —20)° + @ - 20)%] +
18(C2 —20)(T —20) — 27 = (T — 4LsT— 4T +
1603T +8L4T + 8T — 62020 — 403 — 4T +72LT —
27 = (T -2+ 1) QT -4 +T) + 18T —
27) = (CC—1)2 [P —4( +C3) +18CC — 27].

The claim is now evident. O

This proof yields an equation that seems to “magi-
cally appear.” In fact, it occurs “naturally” when one
studies simple operations on the sort of triangles con-
sidered in Section 5. Such ideas are explored in
(Rieck, 2024).

We see that the points on the CSDC (with |z| < eo),
discussed in Section 1, are such that their { values are
arbitrarily close to the standard deltoid, provided that

their |z| is sufficiently large. This explains the “del-
toid phenomenon” that was first observed in (Rieck,
2015).

In the limit case, when A? < 0 there are four P3P
solution points. But when A? > 0 there are only two
P3P solution points. This was established in Corollary
1 of (Rieck, 2015) (though the sign used for Az there
was the opposite of the sign used here). Theorem 4 of
the current paper is concerned with these points. Here
now is a proof of it.

Proof of Theorem 4. {; = {* — 2 for a P3P solution
point, in the limit case. Now, for given {;, there are
at most four solutions to {; = {* —2{. To see this,
notice that this equation implies that ?L = 62 —2C.
These together imply that {; = ({2 —{;)? /4 —2¢, and
so, {* — 28, 0% — 8L+ 3 — 4%, = 0. This is a quartic
equation in , and so it has no more than four solu-
tions.

Lemma 18 makes it clear, in the limit case, that
when A% = 0, the  coordinate of the point is on the
union of the unit circle and the standard deltoid. Also,
the occurrence of CZ — 1 raised to the second power
in the proof of Lemma 18 means that the sign of A?
does not change when the optical center of the camera
crosses the danger cylinder (in the limit case). It is
then straightforward to check that the { coordinate is
outside the standard deltoid when A% > 0, but is inside
the standard deltoid, yet not on the unit circle, when
A} <0.

In the A7 < 0 case, Lemma 13 says that the four
are solutions to {; = {2 — 2, and so there can be no
other solution. By Corollary 1 in (Rieck, 2015), there
are exactly four (real) P3P solution points when A% <
0, so the x; must be the orthogonal projection onto the
xy-plane of these four points. (The sign convention
used for A? there is the opposite of the one used here.)

Corollary 1 in (Rieck, 2015) also indicates that
when Ai > 0, there are exactly two (real) P3P solu-
tion points. To establish that their orthogonal projec-
tions onto the xy-plane are )y and 1, first observe that
Lemma 15 indicates that these satisfy the {; = {> —2(
requirement (with {o = ;). It then suffices to show
that the equation {; = {2 — 2 has only two solutions.
Using {g = —1 — R +iL, with L and R real, and
as defined in (Rieck, 2018) and (Rieck-Wang, 2021),
we are essentially seeking real-valued solutions to the



following system, solving for the unknowns x and y:
R = y¥—(x—1)7
{ L = 2(x+1)y

Thus we are asking about the intersection points for a
pair of rectangular hyperbolas, as discussed in (Rieck,
2015) and in (Rieck, 2018). In fact, the essence of
Corollary 1 in (Rieck, 2015) is that if this system has
a (real) solution, then it has exactly two such solu-
tions if AZ > 0, and exactly four solutions if A? < 0.
Lemma 20 of (Rieck, 2018) assures that there is al-
ways at least one (real) solution. O

Note: In Figure 2, where A% > 0, only the two small
triangles furthest to the left (%o and %) mark the or-
thogonal projections of P3P solution points onto the
xy-plane (in the limit case).

8 The circumcubic, circumquartics
and coordinate quartics

The rectangular coordinates of the camera’s op-
tical center continue to be denoted (x,y,z), and we
take { = x+ iy and Z = z>. The quantities £ and &,
used in the proof of Theorem 4, are needed here as
well. Again, { = —1 — R +iL. Also needed are
these quantities from Sections 1, 2 and 3: xj, x2, x3,
Y1, Y2, Y3, XH, YH, C1 = COSQ., ¢2 = cos P, ¢3 = cosY,
So=1-cicac3,S1=1—-¢},S=1-¢c3,83=1-c3.

Figure 3: Circumcubic and circumquartic curves

When Eq. (7) from Theorem 3 is expanded into its
real and imaginary parts, these formulas (first appear-
ing in (Rieck, 2018)) result:

L=[(+y*—1)(y+2xy — X5y — YyuX —Yu)
+2(1+x)yZ]/Z

and

R =[P+ = D)(x—x*+Y* +xux—yuy —xn)
—(x—y—-1Dx+y—-1Z]/Z.

When Z is eliminated from these two equations,
there results the following cubic polynomial in x and

y:

Y+ (3 =)y + yuxy* — (1+xp)y?
—(L+y)x? =21+ R +xp)xy+ (L+yu)y*
+(L+xgL+YaR —yu)x + Bxu +xuR.
—yuL—R—1)y—xuLl+ynR+yu = 0.

(33)

The curve in the xy-plane described by this equa-
tion has a number of interesting properties. Besides
passing through the orthogonal projection onto the xy-
plane of the P3P solution points (including the cam-
era’s optical center), it also passes through the control
points and the orthocenter of their triangle. It also
has asymptotes that are perpendicular to the sides of
this triangle. These claims can be checked directly,
and are left as exercises for the reader. (The homoge-
neous version of Eq. (33) is useful here.) This curve
will here be referred to as the circumcubic. The left
side of the equation Eq. (33) will be denoted I'.

The remainder of this section discusses other
polynomials and curves concerning the P3P Problem
and the setup used in this paper. Most of these are
long and complicated, and seem to require algebraic
manipulation software to handle. Quartic polynomi-
als whose roots are the x and y coordinates of the P3P
solution points are obtained in this manner. No proofs
are offered here, but computer programs for all of this
are available from the author upon request. Most of
the work was accomplished using the Mathematica
system?, but certain long polynomial factorizations
were achieved using the Singular system?.

By studying the quantities S;/m* (j = 1,2,3),
other curves in the xy-plane emerge. These also pass
through the projections of the P3P solution points
onto the xy-plane, and through the control points and
their orthocenter. One initially obtains three seventh
degree polynomials in x and y, whose coefficients can
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be expressed as polynomials in x1, x2, X3, y1, Y2, ¥3,
S0, S1, S and S3. Upon rescaling by 1?2, the same
may be said of the coefficients of the cubic polyno-
mial . By adding linear combinations of x*I", x3yT",
x%yT’, xy°T and y*T’, to the seventh degree polynomi-
als, three sixth degree polynomials can be obtained.

At this stage, it is helpful to introduce a rectan-
gular hyperbolic curve, one that passes through the
control points and their orthocenter. Let its equation
be Q = 0. The three degree-6 polynomials, together
with I' times monomials of degree 3 or less, and Q
times monomials of degree 4 or less, can be shown
to be linearly dependent. The coefficient of Q in this
linearly dependency is a degree-4 polynomial whose
curve necessarily passes through the projections of
the P3P solution points onto the xy-plane. In fact,
rather surprisingly, the curve also passes through the
control points and their orthocenter. It too has coeffi-
cients that can be expressed as polynomials in xp, x3,
X3, Y1, Y2, ¥3» S0, 1, 52 and S3.

However, it is not unique, since the linear depen-
dence can be accomplished in various ways. There is
in fact a family of such quartic polynomials, resulting
in a family of circumquartic curves, though any two
of these polynomials differ by a linear combination of
I, xI" and yI'. One of these quartic polynomials is ac-
tually quadratic when regarded as a polynomial in y
alone, and its curve has two vertical asymptotes.

We will focus attention on this particular circum-
quartic curve, and write its equation as & = 0. An
example can be seen in Figure 3, where the circum-
quartic is the lighter (solid) curve, consisting of four
sections. The darker curve (blue, three sections) is the
circumcubic. They intersect at various points, includ-
ing the projections of the P3P solution points onto the
xy-plane (dark, square dots), the control points (light
dots) and their orthocenter (light dot).

The Weierstrass substitutions, x; = (1 — tjz) /(1+
13),yj = 2t;/(1+17) (j = 1,2,3), are quite helpful
here. Because of the particular coordinate system
used in this paper, #| + 1, + 13 = 111,13, and so, the co-
efficients of the polynomials in x and y here can be ex-
pressed as rational functions of 12, 3, So, S1, S2 and S3.
By rescaling the polynomials in x and y, these become
polynomials whose coefficients are polynomials in #;,
t3, So, S1, S2 and S3. It is sometimes helpful, par-
ticularly when factoring polynomials and when com-
puting a resultant of two polynomials in x and y, to
replace the S; with their expressions in terms of ¢y, ¢

and c3. In this way, the coefficients of polynomials in
x and y are uniquely expressed as polynomials in 7,
t3, c1, ¢ and c3.

It turns out that after making these adjustments,
the resultant of the adjusted I" and & that eliminates
v, factors so that one of the factors is a quartic polyno-
mial in x whose real roots are the x-coordinates of the
P3P solution points. Likewise, a quartic polynomial
in y whose real roots are the y-coordinates of the P3P
solution points can be obtained. In Figure 3, the ver-
tical (horizontal) dashed lines are simply the plotting
of this quartic polynomial in x (in y). They both inter-
sect the circumcubic and the circumquartic curves at
the projections of the P3P control points.

The quartic polynomials in x (in y) is referred to as
xRes (yRes) in the code that appears in the appendix.
Admittedly, the formulas for these are quite compli-
cated, but they have been thoroughly tested. It might
be possible to obtain more pleasant expressions for
these polynomials. This is suggested by some evi-
dence, as follows. When the polynomials are rescaled
by multiplying by (1+2)3(1413)%/(1 —t213)"S, the
coefficients take on a certain symmetry, namely, they
become invariant under permutations of the subscripts
for the x;, yj, tj, ¢; and S; (permuting these in the
same way). Then, when the coefficients are expressed
in terms of xy, yy, and the Xi, X3, X3, Y1, Y», Y3 and
A that were introduced in Section 2 of (Rieck, 2018),
rather than in terms of the #;, many of the factors take
on a simpler form. For instance, the factor £123 at the
end of the appendix in the present paper becomes the
following:

8503056 [ — 1107 — 1188Xy + 441X}, + 464X
— 113X, — 44X}, + 11X5 + 387Y7 + 480Xy Y7
—50X7 YA — 184X3 Y3 — 25X Y73 — 49Y5,
—76XpYy — 35X3Y; + Y5 /

[((3+ X+ Xu)® (3 + X3+ Xn)®)].

Some of the thus-adjusted factors have geometric
significance, and some appear in (Rieck, 2018).

9 Conclusion

Three methods for solving the P3P Prob-
lem, developed by Finsterwalder, Grafarend-Lohse-
Schaffrim, and Persson-Nordberg, all begin by de-
riving a cubic polynomial. When this is done in a



general, more systematic way, a family of homoge-
neous cubic polynomials results. One of these has a
special, well-studied inhomogeneous form Eq. (23),
with rather simple coefficients, though two of these
are complex numbers. Its occurrence in the context of
studying the P3P Problem is new.

This polynomial’s discriminant Eq. (6) vanishes
if and only if a certain quantity ({;) is on the stan-
dard deltoid curve, helping to explain the occurrence
of deltoids, in a couple ways, in recent analyses of
the P3P Problem. (See (Rieck, 2015), (Rieck, 2018),
(Rieck-Wang, 2021), (Wang et al., 2022).) While the
“deltoid phenomenon” in P3P is now better under-
stood, via the new cubic polynomial, the existence of
such a simple and useful polynomial is still surpris-
ing.

One of the coefficients of the new cubic polyno-
mial ({; again) was introduced in an earlier work
(Rieck-Wang, 2021), where it was shown to have an-
other useful form. This was restated as Theorem 3
in the present article. This article also further devel-
oped the “limit case” of the P3P Problem, by provid-
ing a far better geometric understanding of its solution
points in space, in terms of triangles and deltoids.

Curves that pass through the orthogonal projec-
tions of the P3P solution points onto the xy-plane have
also been obtained. These produce a quartic polyno-
mial for the x coordinates of the P3P solution points.
Similarly for their y coordinates.
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Appendix

A quartic polynomial (xres) whose real roots are the x-
coordinates of the P3P solution points, and a quartic poly-
nomial (yres) whose real roots are the y-coordinates of the
P3P solution points, are detailed below.

xres = xco0 + xcol * x + xco2 * x"2 + xco3 *
— x"3 + xcod * x"4



XC02 = -16*f15°2%f16"2%£27*£5°2%£7°3%£8°3%50 +
yres = yco0 + ycol * y + yco2 * y"2 + yco3 * s B¥f15°2%f16°2%£27%£5°2%£7°3%£8"3%S1 +
— y°3 + ycod * y“4 8*f15°2%£16°2%£7"2*£8"2*£88*50*S1 -
2%£15°2%£1672%£7°2%£8°2%£89%51°2 +
8*f15°2%£16"°2*£27*£5°2%£7°3%£8°3%52 +
8*f15°2%£5°2%£7"2*£8"3*£93%50*52 —
4*£110%£15°2%£7"2%£872%51%52 -
16*£15°4*£47*£7°2%£8"3%50%S1*52 +
4*f15°4%£62*£7°2*£8"3%51°2%52 —
2%£15°2%£5°2%£68*£7°2%£874%5272 +
4*£15°4*£46*£7°2%£874*S1%527°2 +
8*f15°2%F1672*F2T*£5° 2% £ 3%£873%S3 +
8*£16°2%£5"2%£7"3%¥£8"2*£94%50%53 -
4*£111%£16°2%£7"2%£872%51%S3 -
16*£16°4*£47*£7°3%£8"2*50*S1*53 +
4*£1674*£61%£7°3%£8°2%5172%53 —
4*f116%£5°2%£7°2%£8°2%52%53 -
16*F4T+£5"4*£7°3*£8°3%£9"2+50%52*S3 +
8*f121%£7°2%£8°2*S1%S2%53 -
16*£15°3%£16°3%£7°3%£8"3%51"°2%52*53 +
4XE5 4 ES4*ET " 3FEB 4*£9*S52°2%53 —
16%£15°3%£5"3%£7"3*£8 4% F9*S1%5272%53 -
2%£16°2%£5°2%£69*£7"4*£872%53"2 +
4*£16°4*£45%£7°4*£8°2%51%53"2 +
4XE5A*ES5*ET 4*FB 3% £9*52%5372 +
16%£16°3%£5"3%£7 4*£8"3%£9*S1%52%53"2

where

xcol = 8*f157°2*f16"2*£5"2*£53*£772*£872*50 -
4*f1572%£1672%£572%£53*%£772%£872*S1 +
4*£101*f1572*f16"2*£7*£8*S0*S1 -
£157°2%£16"°2*£77*£78%51"°2 -
4*%f1572%£1672%£5" 2% £53*%£772%£872%52 -
4*f£1572*f5"2*f7*£8"3%£97*50*S2 -
2*%f118*f15°2*£872*S1*52 -
16*£1576*f2*£4*£T7*£873*£9*50*S1*52 +
4*f15°5%£77*£8"2%£9*S172%S2 +
f15°2%£38*£42%£5"2*£874*5272 + 4*f15°5%f42%f8"4*S51*52"2
- 4*f1572%f1672*£572%£53*£772*£872*%53 -
4*£1672*f5"2*f7"3*f£8*£98*50*S3 -
2*%f119*£167°2*£772%S1*S3 -
16*f1*f16"6*£3*£7"3*£8*£9*50*S1*S3 +
4*£16°5%£772*£78*£9*S172%S3 +
2*f115%£572%£772%£872%52*53 +

L
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e

16*F13*f14*£5°6*£7"3*£8"3*£9*50%S2%S3 + %xC03 = -8*f15"4*f16*£5%f7 3%£8"4*50*S1*S2 +
L*F122%£T 2% £8°2%S1*52%53 — 5 4*f1574*f16%£5+F7 " 3%F874%S17°2%52 +
16*£15°3%£16°3*£7"2%£8"2%£9"2*51"2*52%S3 - —  4*f1574*f16*£5+f77°3*£874*51%527°2 +
UXF38*E5 5% F7 2% F8 A*¥FI%G2"2*%S3 — < B*f15%f1674*£5%f7"4*£8"3%50%51*S3 -
16%f15°3%F5°3%f7"2%f8 4*f9*S1*52°2%53 + —»  4*f15%f1674*E5*F7 7 4*£B3*S172*S3 +
F16"2%f37*£41*£5°2%£774%53°2 + 4*£16°5%£41%£7°4*S1*53"2 —  B*f15*f16*£574*£7"4*£8"4*£9*S0*52*S3 +
+ 4*£37%£5°5%f7 4% f8"2%F9*52%33°2 + < 4*f15°2%F167°2%f29%£5°2%£7°3*£873*51*52%53 -
16*f16"°3*f5"3*f7 " 4*f8 2*xf9*31*S2*S3"2 — A*f15*%f16*f574*f774*£874*£9%5272%53 ~
s 4*f15%f16°4*£5+f7 4*£8"3%51%53°2 -
xcol = -64*f15°2%f16"2+F5"2+f7"3*F8"3*F9*S0 + s 4Ff15%F16%F5 4% 7 4% £874*F9*52%53"2

32%f15°2%F16"2%£5"°2+f7"3%£8"3*£9*S1 +
16+E15°2%F16°2%F7 2% £76%F8 2% £9%50%51 — ycol = -32%£157°2%f16"2%£5°2%£6"2%£7 2% F8 2%t 2" 2%£372%S0 +
QHXFIO*F15 2% F16 2% F1OXE6 2% F7 2% £8 2% F9*S1°2 + 16%£15°2%f16°2+F5°2%f6 2% f7 2% £8"2%£2°2%£3°2%51 +
32%f15°2%F16"2%F5"° 2+ f7"3%£8"3*£9*52 + 32%F15°2%F16°2%£6 2% F60*£T*£8*£2*£3%50%S1 —
16%£15°2%F5°2%F7 2% £79%£8°3%50%52 — 16%£15°2%f16"2*f35%£36%£6"2%S1°2 +
8*F106*F15°2%F7 2% F8°2%S1%52 — 16%£15°2%f167°2+F5°2%F6 2% f7 2% F8"2%£2°2%£3°2%52 +
8*f15°4*f7*£8"3*£86%50*S1*S52 + 32%F15°2%F5 2% £52%F6*FT*F8 " 3%£ 27 2% 3%50%52 —
L*F15 4% ET*£8 2% F95451 2452 — 16*f109*f15°2*f6*£8°2*L2*S1%52 -

8*F12%F15 2% f28*£5°2%F7 2% £874%£2°2%52"2 + 32*%f1576*F6*£7*FB73*¥L2*£372*S0*S1*S2 +
4*f1574*F58*FT+FB4*S1%527°2 + 16%f15°5%f36%£6°2%£8"2%£3%51°2%52 —

3% F15°2%F16° 2% F5 2% F7 3% £873%F9%53 + 16*F15°2+F1T*E31*£5°2%£874*£2°2%52°2 +
16%f16°2%£5°2%f7"3*£8"2*£80*S0*S3 — 16%f15°5%f17%£874*£2"2%£3%51%52"°2 +
8*f107*f16°2*%f7°2*%£8°2*%51%53 - 16%£15°2%f16°2%£5°2%F6 2% f7 2%£8"2%£2°2%£3°2%53 +
8*f16°4*£7"3*£8*£85%50*S1*S3 + 32%F16°2%£5 2% £51%£6*£7 3% £8*£2%£3°2%50%53 —
4¥F16°4*F7 2% E8%£96*%S1°2*53 - 16%£108*f16°2*%F6*£7"2%£3%31%53 -
8*F112%£5°2%F7"2%£8°2%S2*S3 + 32%F16°6*F6*F7 3% £8*£2 2% 3%S0%S1%S3 +

QHF5 4% FE3*£7 3% £8°3¥F9*¥S0%52%S3 + 16%f16°5+F35%F6"2%f7"2%t2%S1°2*%33 —
4*F123%£7 2% £8°2%S1*52%S3 + 16%£103%F5°2%£7 2% F8 2%t 2*£3%52%53 —
32%f15°2%f16"2%f5 2% f7"3%f8"3*f9*50*S1*52%53 - 32%£576*£672%£7 3%£873*£9*£L2*£3*50*S2*53 +
16%f15°2%F16"2*f48*£7"2%F8"2*f9*S1"2%S52%53 - 16*Ff117*£772%£872%51%52%53 -

QX E5 4*ET QX ETI*E 4% F9%S272%S3 — 16%£15°3%f16"3%f6 2+F7 2% £8 2%L2%L3%S1"2%52%53 +
16*f15°2%f34%F5 2% f7°2%f8 " 4*f9*51%52°2%53 — 16*f31*f5°5%f6*f772%f8"4%£272%5272%S3 —
8*F11%f16° 2% F26%£5°2%£7 4% £8°2%£3°2%53°2 + 16%f15°3%F5"3%F6*f7 2%F8 4%t 2" 2*£3%S1%52°2%53 -
4% F16°4*F59% £ 4*F8*S1%53°2 — 16%£16°2%f18*£32%£5"°2%£774%£3°2%53"2 +

L% E5 4*ET 4% ETO*EG 2% F9%S2%53°2 — 16%£16°5%f18%£7 4*£2%t3°2%51%53"°2 —
16%f16°2%F33*%£5 2% £7 4*£8 2% F9*51%52%53"2 16%£32*£5°5%£6*£7 " 4*£8"2%£3°2%52%53"2 +
16%£167°3%£5 3% F6*F7 4% £87 2%t 2%t 3" 2%51%52%53"2
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yco3 = 8*f1574*f16*£5%£773%£874*£3*50*S1*S2 -
4*f15°4*f16*£5%f7"3*£874*£3*S172*S2 -
4*%f1574*f16*£5%f773*f874*£3*51*52"2 -
8*f15%f16"4*£5%£774*£873*£2*50*S1*S3 +
4*f15%£1674*£5%£774*f8"3*£2*S1"2*S3 -
8*f15%f16%£574*fo*f7"4*£874*50*52*%S53 -
16*£1572*£167°2%£5"2%£6*£7"3*¥£8 " 3*¥£2*£3*S1*52*53 +
A*f15%£16%£574*f6*f774*£874%5272%S3 +
4*f15%f1674*f5%f774*f8"3*£2*S1*53"2 +
A*f15%f16*£574*f6*£774%£874%52%5372

= 64*f157°2%f1672*f5"2%£6*£773*£8"3*t2*t3*50 -
32*%f1572*f1672%£572*%f6*f7"3%£8"3*£2*£3*S1 -
16*£157°2%£16"2*£6*£7°2*£73*£8"°2*50*S1 +
16*£15°2*£f1672*£25*£30*£6*£7"2*£87°2*51"2 -
32*%f1572%f1672%£572*f6*f7"3%£873*£2*£3*52 -
16*£157°2%£57°2%£772*£8"3*£82*t2*50*S2 +
16*£15°2*£772*£872*£99*£3*51*S2 +
16*f1574*£7*£75%£8"3*£3*S0*S1*52 -
16*£1574*f6*£7*£872*£83*£3%5172%52 +
16*£15°2*£21%£23%£5°2%£772%£874*£2%5272 -
16*f1574*f44*fT7*£8 4% 2*£3*S1*5272 -
32%£157°2%£1672*%£57°2*%f6*£773%£8"3*L2*t3*53 -

L

el

16*£16°2*£5°2*£773*£872*£81*t3*50*S3 + fl =1+ t2
16*f100*f16°2*£772*£872*£2*S1*S3 +

16*£1674*£7"3*£74*£8*£2*S0*S1*S3 - f2 =1+ t3
16*f16°4*£6*£7"2%£8*£84%L2*S1"2*S3 +

16*f102*f5"2*f6*f7"2*£8"2%52*S3 + f3 =-1+t2
16*£574*f6*£7"3*£72*%£8"3%50%52*53 -

16*f114*£6*£772*%£8 2% 2*£3*51*52*S3 - f4 =-1+t3
32*%f1572*f1672*£572*f6*£7"3*£8"3*£2*£3*¥S0*S1*S2*S3 +
16*£157°2%f16"2*£48*£6*£7"2*f8 2% 2% 3*%51"2%52*53 - f5 =1t2 - t3
16*£574*£57*£6*£772*%£874*£2%5272%83 +

16*f15°2%£34*£572%f6*£7 " 2%£84*£2*£3*S1*S5272*S3 + f6 =t2 + t3
16*f1672*£20*f24*£5"2%£774*£872*£3*5372 -

16*£1674*£43%£7 4% £8*£2*£3%51%5372 — £f7 =1+ t272
16*£574*f56*f6*£774%£872*%£3%52%5372 +

16*f16"2*£33* 57 2%f6*f7 7 4*£8 " 2*£2*£3*¥S1*52%53"2 f8 =1+ t3"2

= -32*%f1572*f16"2*f22*£5"2*£7"3*£8"3*S0 + f9 = -1 + t2*t3
16*£157°2*f16"2*£22*£5"2*£7"3*£8"3*S1 +

8*f1572*£1672*£772*£872*£90*S0*S1 - f10 = -3 + t2*t3
4*£1572*%f1672*£772*£872*£87*S1°2 +

16*£157°2*£16"2*£22*£5"2*£7"3*£8"3*52 + f1l = -3 - t272 + 2*t2*t3
8*f1572*£572%£772%£873*£91%50%52 -

4*£104*£1572*%£772%£872*51*52 - f12 = -3 + 2*t2*t3 - t372
16*f1574*£47*£772%£8"3*£372*50*51*S2 +

4% f1574*f66%£772%£8"3*L3%5172%52 - f13 = -1 - t2 - t3 + t2*t3
A4*f15°2*%f572%f64%£772%£874%5272 +

4*f1574*f40*£7°2%f8"4*£3*%51%52°2 + fl4 = -1 + t2 + t3 + t2*t3
16*£157°2%f16"2*£22*£5"2*£7"3*£8"3*S3 +

8*f1672*£572*£773%£872*%£92*50*S3 - f15 = -2%t2 - £3 + t272*t3
4*£105%f16"2*£772*f8"2*51*S3 -

16*£1674*£47*£773%£872%£272*50*51*S3 + f16 = -t2 - 2*t3 + t2*t3°2
4*£1674*£6T7*£7"3%£8"2%£2%S51"2%S83 —

4*f113*£572*%f7°2%£8"2%52*S3 - f17 = £274 - 2%t2*t3 - t372
16*£47*£574%£672%£7"3*£8"3*50%52*53 +

8*f120%£7°2%£872%51*52*%83 — f18 = —t272 - 2*t2*t3 + t374
16*f15°3*f16"3*£773*£8"3*£2*£3*S1"2*52*S3 +

4*£574%£50%f6*£7"3%£874%5272%S3 — f19 = -3 - t272 - t372 + t272%t3"2
16*£157°3*£5"°3*£6*£7"3*£8"4*£3%51%5272%53 -

4*£1672*f572*f65%£7"°4%£8"°2%5372 + £20 = -t272 - t2*t3 - t372 + t2*t373
4*f1674*f39*%f774*f8"2%£2*%51*8372 +

A% FA49*£574*£6%£774*£873%52%5372 + f21 = -t272 - t2*t3 + t273*t3 - t372

16*f16°3*£5"3*£6*£7"4*£8"3*£2*S1%52%5372
£22 = t272 + t2*t3 + t372 + t272*t372

£23 = £272 - 2%t2*t3 - 2*t372 + t272%t372

24 = -2%t272 - 2*t2*t3 + t372 + t272*t372

£25 = —t272 - 4*%t2*t3 - £372 + 2*t272*t372

£26 = 3 - t272 - 4*t2*t3 + t372 + t272*t372



£27

£28

£29

£30

£31

£32

£33

£34

£35

£36

£37

£38

£39

£40

41

£42

£43

f44

£45

f46

£47

f48

=3+ £272 - 2*t2*t3 + t372 + t272*%t372

=3+ t272 - 4*t2%t3 - £372 + t272*%t372

= -3 4 t272 + 4*t2%t3 + £372 + t272%t372

= -t272 - t2*t3 - £372 - 2%t272%t372 + t273*t373

= t272 - 2%t273%t3 - £372 - t272*t372 + t274%t372

= -t2°2 + £372 - t272%t372 - 2%t2*t3"3 + t272*t374

= 2%t272 + 2*t2*t3 4+ 5%t372 - t272*t372 - 6*t2*t3°3 +
t374 + t272*%t374

= 5%t272 + t274 + 2*t2*t3 - 6*t273*%t3 + 2%t372 -
£272%t372 + t274*t372

= -t272 - 2%t2*t3 - 4*t2*t373 - 2*t273%t373 - t374 +
£272%t374 + t274*t374

= -t274 - 2%t2%t3 - 4*L273*%t3 - t372 + t274%t372 -
2%£273%t37°3 + t274%t374

= 2%t2 + T3 + £272%t3 + 4*t2%t372 + 10%t3°3 -
2%£272*%t373 - 6*t2*t374 - t375 + t272*t3"5

= T*t2 + 10%t273 - 275 + 2*t3 + 4*t272*%t3 - 6%t274*%t3
+ E2%E372 - 2%t273%t372 + t275%t372

= 4%E273 + 2%E272%t3 4+ 5*L2*t372 - t273*%t372 - 2*t373 -
8*t272%t373 + 3*t2*t374 + t273*t374

= -2%t273 + 5*L272%t3 + 3¥t274%t3 + 2*t2*t372 -
8*t273%£372 + 4*t373 - t272%t373 + t274*t373

= 2%t2 - 5%t3 - 3*t272%t3 + 12%t2%t3°2 - 2*%t3°3 -
6*t272*t373 + 2*t2*t374 - £375 + t272*t375

= -5%t2 - 2*%t273 - t275 + 2*t3 + 12*t272*t3 + 2*%t274*t3
= 3*t2*t372 - 6*t2°3*t372 + t275%t372

= 2FE273 + 4*E272%t3 4+ t2%t372 - t273*t372 + 2%t3°3 -
2%£272*%t373 - 4*t2*t374 + t375 + t272*t375

= 2%t273 + t275 + t272*%t3 - 4*t274*%t3 + 4%t2*t372 -
2%E273%6372 + t275%t372 + 2*t373 - t272*%t373

= 2%t272 - t2*%t3 + t273%t3 + 8*t372 + 2*t272*t372 -
11*£2%£373 - t273*%t373 + 2%t374 + 2*t272*t374

= 8%t272 4+ 2*t274 - t2%t3 - 11%t273*t3 + 2*t372 +
2%E272%€372 + 2*£274*£372 + t2*t373 - t273*t373

= 3*t272 + t274 + 3*t2*t3 - t273*%t3 + 3*t372 +
3*¥£272%€372 - t2*%£373 - 5%t2°3*t37°3 + t374 + t274*t374

= 5%t272 + t274 + 8*t2*t3 + 5*t372 + 4*t272%t372 -
t274%£372 - 8*t273*t373 + t374 - t272%t374 +
2*%t274*t374

£49

= 4*t273 + 10%t272*%t3 + 13*t2*t372 - 3*t27°3*t372 +
9%t373 - 11%t272*t3%3 - 11*t2*t374 + t273*t374 + t375 +
3*%£272%t375

= 0%t273 4+ t275 + 13*t272%t3 - 11*t274*t3 + 10*t2*t3"2
= 11%£273*%t372 + 3*t275%t372 + 4*t373 - 3*t272%t3°3 +
£274%£373

= t272 + £274 4+ t2%t3 + t273%t3 - 2*%t372 + 2*%t272*t372
+ 6%L2*%£373 - 2%t273*t373 - t374 - 5%t272%t374 +
t2*t375 + t273*t3"5

= -2%t272 - t274 + t2*t3 4+ 6*%t27°3%t3 + t27°5%t3 + t372 +
2%E272%1372 - 5%t274%t372 + t2*t373 - 2*t273*t373 +
£275%t373 + t374

= -3 - 2%t272 + t274 + 4*t2%t3 + 4%t273%t3 - 2*t372 -
2¥L274%E372 + 4*2%£373 - 4%t273%t373 + t374 -
2%E272*%t374 + t274%t374

= -11*%t272 - 3*t274 - 5*t2*t3 + 21%t273*t3 + 2*t2°5*%t3
- 2%E372 4+ 9*t272*%t372 - 13*%t274*%t372 + 3*t2%t3°3 -
3%E273%£373 + 2*t275*t373

= -2%t272 - 5*t2*t3 + 3*t27°3*t3 - 11*t372 + 9*t272*t372
+ 21%E2*%£373 - 3*t27°3*t373 - 3*t374 - 13*t272*t374 +
2*%L2*t375 + 2*t273*t375

= 2%t273 4+ 2*t272%t3 - £2*t372 + t2°3*t372 - 3*t373 +
3¥£272%6373 + 6*t2*t374 - 2%t273*t374 - t375 -
S*L272*%£3%5 + t2*t376 + t273*t376

= -3%t273 - t275 - £272%t3 + 6*t274*%t3 + t276*t3 +
2%E2%£372 4 3*t273%£372 - 5%t275%t3%2 + 2*%t3°3 +
£27°2%€373 - 2*t274*%t373 + t276%t3°3

= -17*t27°2 - 6*t274 - t276 + t2*t3 + 34*t273*t3 +
S5*L275%t3 - 2%t372 - 3%t272*%t372 - 20%t274*t372 +
£276%t372 + 5*t2*t373 + 2*t273*t373 + t275*t373

= -2%C272 4 t2%t3 4+ 5*t273*%t3 - 17*t372 - 3*t27°2%t372 +
34%£2%£373 + 2%t273*%t373 - 6*t374 - 20%t272%t374 +
S5*L2*t375 + t27°3*t3"5 - 376 + t272*t376

= 2%t272 + t274 + 5*t2*t3 + 4*t273%t3 + 2*t372 +
2¥L272%6372 - 2%t274%E372 + 4FE2%t373 + 2%t273*%t3°3 +
€374 - 2%£272%t374 - 4*t274%t374 + t275%t375

= 11%t272 + 3*t274 + 17*t2*t3 - t275%t3 + 8*t3"2 +
A*E272%€372 - 4*E274*E372 4 3*t2*%t373 - 12*t273%t37°3 +
£27°5%t373 + 2*%t374 - 3*t272*t374 + 3*t274*t374

= 8%t272 4+ 2%t274 + 17*t2%t3 + 3*t27°3*t3 + 11*t372 +
A%E272%E372 - 3*t274*£372 - 12*t273*%t373 + 3*t374 -
A*¥£2°2%€3%4 + 3*t274*t374 - t2*t37°5 + t273*t375

= -10%t27°2 - 2*t274 - T7*t2*t3 - t275%t3 - 10*t3"2 -
32%272%6372 + 2*t274%t372 + 40%t273*t373 - 2*t374 +
2%£2°2%3%4 - 12*t274*t374 - £2%£375 4+ t275*t375

= 3*t274 + t276 + 4*t273%t3 - 4*t275%t3 + 8*t272*t372 -
2FL27A%E372 + 2%t276*%t372 + 8*t2*t373 - 4%t273*%t3°3 -
4%£275%£373 + 4*t374 - t274*t374 + £276%t374
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= 4%E274 + 8XE273%t3 + 8FL272%t372 + 4*t2%t3°3 -
4*£273%£373 + 3*%t374 - 2%t272*%t374 - t274%t374 -
4*E2%£375 - 4*E273*t375 + £376 + 2%t272%t376 +
t274%t376

= 2%t273 4+ 11*t27°2*%t3 + t274*t3 + 14*t2*t372 +
2%£273*%€372 + 9%t373 + 10%t272%t373 - 3*t274*t3°3 -
2%t2%t3%4 - 16*t273*%t374 + t375 - t272%t375 +
4*£274%£37°5

= 9%t273 + t275 + 14*t272%t3 - 2*t274*t3 + 11*t2*t372 +
10*£273*%£372 - t27°5%t372 + 2*t373 + 2%t272*t3"3 -
16*t274*£373 + t2*%t374 - 3*t2°3%t374 + 4*t275*%t374

= 19%t272 + 16*t274 + t276 + 4*t2*t3 - 32%t273*t3 -
20%€27°5%E3 + 4*t372 + 2%t272%t372 + 28%t274%t372 +
6*t276%t372 — 4*t2*t373 - 12*t275%t373 + 3*t272%t374 +
t276*t3%4

= 4*£272 + 4*E2%E3 - 4%t273%t3 + 19%t372 + 2%t272*t372
+ 3%t274*%t372 - 32*t2*t373 + 16*t374 + 28*t272*t374 -
20%t2%£37°5 - 12%t27°3*t3°5 + t376 + 6*t272*t3"6 +
t274*t3%6

= -2%t272 - 5%t2*t3 - 3*t2°3*t3 - 20*t3"2 -
10*£272%6372 + 5%t2*t373 + 3*t273*t373 - 28*t374 +
6*t272*t374 + 33*t2*t37°5 - t273*t3"5 - 10*t272*t376 -
t2*t3°7 + £273*t377

= -20%t2"°2 - 28*t2"4 - 5*t2*t3 + 5*t273*t3 + 33*t275*t3
- £277%t3 - 2%t372 - 10*%t272*%t372 + 6*t274*t372 -
10*£276*£372 - 3*t2*t37°3 + 3*t273*t3"3 - t275*%t3"3 +
2775373

= -2%t274 + t273%t3 + 3*%L275%t3 + 2%t272%t372 +
2%£274%£372 + t2*t373 + 8*t273*t373 - t275%t373 -
2%£374 + 2%t272%t374 - 10*t274%t374 + 3*t2*t3°5 -
£2°3%£37°5 + 2*t275*%t375

= 2*t274 + 11*t273*t3 + t27°5%t3 + 10*t27°2%t3"2 -
2%€274%€372 + 11%t2*t373 + 14*t273*t373 - t2°5%t373 +
2%t374 - 2%t272%t374 - 18*t274*t374 + t2*t3°5 -
£273*%t37°5 + 4*t2°5*%t3°5

= 2%t274 + 9%t273*t3 + t275%t3 + 13*t272%t372 -
t274%£372 + 8*t2*t373 + 4*t374 + 8*t272%t374 -
6*t274*t374 + 2*%t2*%t375 - 13*t273*t37°5 + t275%t3"5 +
2*t376 - t272*t376 + 3*t274*t376

= 4*E274 + 2%t276 + 8*FL273%t3 + 2%t275%t3 +
13*£272%6372 + 8%t274%£372 - t276*t372 + 9*t2*t3°3 -
13*%£275%£373 + 2*£374 - £272%t374 - 6*t274*t374 +
3*¥£276%t374 + t2*£3°5 + t275%t375

= 10%t272 + 4*t274 + 16*t2*t3 + t273*t3 - t275*t3 +
10*£372 + 2*%t272%£372 - 4*£274*t372 + t2*t37°3 -
10*£273*£373 + £27°5%t373 + 4*t374 - 4*t272%t374 +
2%£274*t374 - £2*t37°5 + t273*t3"5

= 5%t2 + 2%t273 + £275 + T*t3 - 2%t272%t3 + 3*t274*%t3 -
2%E2%£372 + 4%t273%t372 - 2%t2°5%t372 + 10*t373 -
4*£272%£373 - 6%t274*%t373 - 19*t2*t374 - 6*t273*t374 +
t2°5%t374 - £375 + 6*t272*%t375 + 3*t274*t375

£78
<
<

N

£79

{

L

£80

s i dds fdHdls I le PPl e Hlle Pl ls LI !

el

= T7*t2 + 10*t273 - £27°5 + 5*t3 - 2*t272*%t3 - 19*%t274*t3
- 2%E2%t372 - 4*t273*%t372 + 6*t275%t372 + 2*t373 +
4%E272%E373 - 6*t274*E373 + 3*t2*t374 - 6%t273%t374 +
3%E275%E374 + £375 - 2*t272*t375 + £274%t375

= -10%t272 - 4*t274 - 4*t2*t3 + 15%t273*t3 + 3*t2°5%t3
- 4%E372 - TFE272%E372 - 9%t274%E372 + 8*t2*t373 +
26%t273%t373 + 2*t275%t373 - 4*t272%t374 - 18*t274*t374
+ 3%£273%t37°5 + 3*t275%t375 + t272*%t376 - t274*t376

= —4%t272 - 4*%E2*t3 + 8*t273*t3 - 10*t372 - T*t272*t372
- 4*E274%E372 + £276*t372 + 15*t2*t373 + 26*t273*t373 +
3%£275%£373 - 4*t374 - 9%t272%t374 - 18%t274%t374 -
£276%t374 + 3*t2*t375 + 2*t273*t375 + 3*t275*%t3°5

= 8%t274 + 4%t276 + 16%t273%t3 + 4*t275%t3 +
11%£272%E372 + 2*%t274*%£372 - £276*t372 + 3*t2*t3°3 +
2%£273%£373 - 9*t275%t373 - 2%t374 - 3*t272*t374 -
12%€274*£374 + £276%t374 + 3*t2*t375 + 2%t2°3%t3°5 +
3*%£2°5%t375

= -2%t274 + 3*t273*t3 + 3*%t2°5%t3 + 11*t27°2%t372 -
3%L274%£372 + 16%t2*%t373 + 2*t273*t373 + 2*%t275%t373 +
8*£3%4 + 2%t272*%t374 - 12*t274*t374 + 4*t2*t3°5 -
9*L273%£375 + 3*t275*%t375 + 4*t376 - t272*t376 +
t274%t376

= 2%t273 + t275 + 5*t272*t3 + 5*t274*t3 + 8*t2*t372 +
13*%£273*%£372 - 2*t275%t372 + 3*t373 + 2*t272*t373 -
9*t274*£373 + 2*t2*t374 + 6*t273*t374 + t275*t374 +
£375 4+ t272*t375 - 8*t274%t375 - t273*t376 +
2%£275%t376

= 3%t273 + t275 + 8*t272*t3 + 2*t274*t3 + 5*%t2*t372 +
2%£273*%£372 + t27°5%t372 + 2*%t373 + 13*t272*t373 +
6%t274*t373 - t276*t373 + 5*t2*t374 - 9*t273*t374 -
8*£275%3%4 + t375 — 2*t272%t375 + t274*t375 +
2%£276%t375

= -10%t272 - 2*t274 - 13*t2*t3 + 22*t2°3*t3 + 3*t275*t3
- 13*%t372 + 8%t272%t372 - 11*t274*t372 + 6*t2*t37°3 +
24*%£2°3*%£37°3 + 2*t2°5*t373 - 10*t374 + 10*t2°2*t3"4 -
20%£274%£374 + TFE2*%t3°5 - 6*t273*%t375 + 3*t275%t3"5 -
£376 + t274*t376

= -13*%t272 - 10*t274 - £276 - 13*t2*t3 + 6*t273*t3 +
TH£275%t3 - 10*%t372 + 8*t272%t372 + 10*t274*t372 +
22*%£2*t373 4+ 24*£273*%t373 - 6*t27°5*t373 - 2*t374 -
11%t27°2*%t374 - 20*%t274*t374 + t276*t3"4 + 3*t2*t3°5 +
2%£273*%£375 + 3*t275*t375

= 3*%t274 + t276 + 8*t273*t3 + 4*t275*%t3 + 14*t272*t3"2
+ 15%€274%£372 - t276%t372 + 8*t2*t3"3 + 8*t273*t3"3 -
8*L275%t373 + 3*t374 + 15%t272*t374 + 10*t274*t374 +
4*£2%£375 — 8*t273%t375 - 16*t2°5%t3"5 + £376 -
£27°2%t3%6 + 4*t276*t376

= 11%t272 + 10*t274 + t276 + 14*t2*t3 + 5*t27°3*t3 -
S*L275%t3 4+ 11%t372 + 18*t272*t372 + 6*t274*t372 +
£276%E372 + 5*t2*t373 - 12*%t273*t373 - 9*t275%t373 +
10%£3%4 + 6*t272*t374 + 2*%t276*t374 - 5%t2*t3°5 -
9*t273*t375 + t376 + t272*%t376 + 2*t274*t376



h
©

9 = 19%t272 + 16*t274 + t276 + 34*t2*t3 + 20*t273*t3 -

< 6*t275%t3 + 19%t372 + 24*£272*%t372 + t274%t372 + £98 = —4*t272 + 4*t274 - 4*t2*t3 + 16*t273*t3 - 4*t275%t3 -
< 20%t2*t373 - 8*t273*t373 - 12*t275*%t3"3 + 16*t374 + —  19*t372 - 15%t272%t372 - 5*%t274*t372 - t276*t372 +

< £272%t374 - 8*t274*t374 + 3*t276*t374 - 6*t2*t3°5 - —  30*t2*t37°3 + 60*t273*t373 - 10*t2°5%t3"°3 - 17*t3"4 -

—  12%t273*%t375 + 2*%t2°5%t3°5 + £376 + 3*t274*t376 —  TFE272%t374 - 59%t274*t3%4 + 3*t276*t374 + 40*t2*t3°5 -

—»  24%t273*t375 + 24*t275%t375 + 3*t376 - 37%t272%t3%6 +
£90 = 4*t274 + 2*t276 + T*t273*t3 + 3*t2°5%t3 + —  29%t274*£376 - 3*t276*t376 - 2*t2%t377 + 12%t273*t377 -
—  14*t272%t372 + 1T7*t274%t372 + t276*t372 + TFt2*t373 + — 10*t275%t377 + t378 - t272*t378 - t274*t378 + t276*t3"8
e 4*t273%t373 - 11%t275%t373 + 4*t374 + 17%t272%t3%4 +
—  12%t274%t374 + t276*t374 + 3*t2*t375 - 11%t27°3%t3°5 - £99 = 15%t276 + 3*t278 + 45*%t275%t3 - 3*t2°7*t3 +
—  18*t275*%t375 + 2*%t376 + t272%t376 + t274*t376 + —  T6*t274*£372 - 4*t276%t372 + T7*t273*t3°3 -

—  4*t276*t376 < 26%t2°5%t373 - 23*t277*t373 + 69*t272*%t374 -

—  11*t274*t374 - 35*t276*t374 + 5*t278*t374 + 38*t2*t3"5
£91 = 4*t274 + 2*%t276 + 9FL2°3*t3 + t275%t3 + 17*t272*t372 — = 41*%t273*t375 - 110*t275%t375 + 17*t2"°7*t3"5 + 4*t376
— o+ 9FE274%E372 + 2%t276%t372 + 16%t2*t373 + 6*t273*t3"3 < = 34%t272*%t376 - 54*t274*t376 + 94*t276*t376 -

— = 10*t275*t373 + 8*t374 + 10*t272%t3"4 - 6*t274*t374 + < 2%t278*%t376 + 8*t2*t3°7 + 11*t273%t3"7 + 58*t275*t3°7 -
< 2*t276%t374 + 4*t2*t37°5 - 11*t273*t3°5 - TFt2°5%t3°5 + > 25%t277*t377 - T*t272%t378 - T*t274*t37°8 - 18*t276*t3"8
—  4*t376 + t272*%t376 + t274*t376 + 2*t276*t376 <+ 2%t278*t378 + 2*%t2*t379 + t27°3*t379 + t2°5%t379 +

—  2*t277*t379
£92 = 8*%t274 + 4*t276 + 16*t273*t3 + 4*t275*%t3 +
—  17*t272%t372 + 10*t274*t372 + t276*t372 + 9*t2*t373 + £100 = 4*t276 + 38*t275*t3 + 8*t277*t3 + 2*t279*t3 +
< 6*t273%t373 - 11*t275%t373 + 4*t374 + 9*t272*t374 - > 69%L274*£372 - 34*t276*t372 - 7*t278%t372 +
< 6*t274*t374 + t276*t374 + t2*t3°5 - 10%t2°3*t3°5 - —  TT*£27°3*t373 - 41*t275%t373 + 11*%t277*t373 + t279%t3"3
< T*t275%t375 + 2*t376 + 2*t272%t376 + 2*t274*t376 + — 4+ 76*t272*%t374 - 11*t274*t374 - 54*t276*t374 -

—  2*t276*t376 < T*t27°8*t374 + 45%t2*t37°5 - 26%t273*t3°5 - 110*t275%t3"5
< 4+ 58*L277*t375 + t279%t375 + 15%t376 - 4*t272*t376 -

£93 = 11*t27°2 + 10*t274 + t276 + 8*t2*t3 - 9*t273*t3 - —  35%t274*t376 + 94*t276*t3"6 - 18*t278*t376 - 3*t2*t3"7

< 9*E275%t3 + 8*%t372 + 12%t272%t372 + 17%t274*t372 + — = 23%t273%t377 + 17*t275%t377 - 25%t277*t37°7 +

—  3*t276*t372 - 8*t2*t373 - 22%t273%t373 - 14*t2°5%t3°3 + —  2%t279*%t377 + 3*t378 + 5*t274*%t378 - 2*t276*t378 +

—  4*t374 4+ 11%t272%t374 + 20%t274*t374 + 3*t276%t374 - —  2*t2°8*t3"8

—  4*t2*£375 - 5*t27°3*t3"5 - 9*t275%t375 + 2*t272*t376 +

— t274*t376 + t276*t376 101 = 19%t272 + 17*t274 - 3*t276 - t278 + 34*t2*t3 -

—  16*t273%t3 - 46*t275%t3 - 4*t277*t3 + 19%t372 -
£94 = 8%t272 + 4*t274 + 8*L2%t3 - 8*t273*t3 - 4*t2°5%t3 + —  50%t272%£372 - 26%t274*t372 + 22*t276*t372 +
—  11%E372 + 12%t272%£372 + 11*t274*t372 + 2*t276%t3"2 - —  3%t278*%t372 - 16*t2*t373 + 14*t273*t3"°3 + 28%t2°5%t3"3
—  9Xt2*£373 - 22*t273*t373 - 5*t275%t373 + 10*t374 + <+ 6*¥t277*t373 + 17%t374 - 26%t272%t374 + 6%t274*t374 +
—  17*t272%t374 + 20%t274*t374 + t276*t374 - 9*t2*t3°5 - < 6*t276*t374 - 3*t278%t374 - 46*t2*t375 + 28*t273*t3°5 +
—  14%t27°3%t375 - 9*t275%t375 + t376 + 3*t272*t376 + < 26%t275%t375 - 8*t277*t375 - 3*t376 + 22*t272*t376 +
—  3*t274*t376 + t276*t376 < 6Ft274*t376 - 26%t276*t376 + t278*t376 - 4*t2*t377 +

< 6Ft273*%t377 - 8*t275*t377 + 6*t277*t3°7 - t3°8 +
£95 = -17*t27°2 - 6*t274 - t276 - 35%t2*t3 + 10*t273*t3 + —  3%t272*%t378 - 3*t274*t378 + t276*t378
< £275%t3 - 20%t372 + 17*t272%t372 - 6*t274%t372 +
<  £276*t372 - 17*t2*t373 + 14*t273*t373 + 11*%t2°5%t3°3 - £102 = -4*t276 + 14*t27°5%t3 + 20*%t277*t3 + 2*t2°9*t3 +
< 28%t374 4+ 53%t272%t374 + 18*t274*t374 - 3*t2°6%t374 + —  6LFL274*£372 + 26*t276*t372 - 3*t278%t372 +
—  51*t2*t375 + 6*t273*t375 - 17*t2°5%t3"5 - 21*t272*t376 —  101*t273*t373 + 40*t2°5%t3"3 + t2°7*t3"3 - 2*t279*t3"3
< = 22%E274%t376 + 3*t276%t376 + t2*t377 + 2*t273*t377 + <+ 61*%t272*%t374 - 10*t274*t374 - 99%t276*t374 -

—  5*t275%t3"7 < 20%t278*t374 + 14*t2*t3°5 + 40*t2°3*t375 - 45%t275*t375

— + 38*t277*t375 + 5%t279%t3°5 - 4*%t376 + 26%t272*t376 -
£96 = -20%t272 - 28%t274 - 35%t2*t3 - 17*t273*t3 + —  99*t274*£376 - 68*%t276*t3"6 — 3*t278*t376 + 20*t2*t3"7
—  51*E275%t3 + t277*t3 - 17%t372 + 17%t272%t372 + <+ t273%t377 + 38*%t275%t377 + 89*t277*t3"°7 - 3*t272*t378
—  53%t274%t372 - 21%t276%t372 + 10*t2*t373 + 14*t2°3*t3°3 — - 20%t274*t378 - 3*t276%t3"°8 - 30%t2°8*t3"8 + 2*t2*t379
<+ 6*L275%t373 + 2*t277*t373 - 6*t374 - 6*t272%t374 + - 2%t273*%t379 + 5*t275%t379 + 3*t279*t379
—  18%t274%t374 - 22%t276*t374 + t2*t375 + 11*t273*t37°5 -

—  17*£27°5%t375 + 5*t277*t375 - £376 + t272%t376 - £103 = -8*%t276 - 11*t275%t3 + 18*t2"7*t3 + t279%t3 +

< 3*t274*t376 + 3*t276*t376 8*L274%£372 + 44%t276%t372 — 4*t278*t372 + 22%t273*t3°3
+ 103*£275%£3%3 - 16*t277*t3"3 - t279*t3"3 +

£97 = -19%t27°2 - 17%t2"4 + 3*t276 + t278 - 4*t2*t3 + 8*£272*%t374 + 156*t274*t374 - 156*t276*t374 -

30%t273*%t3 + 40%t275%t3 - 2*t277%t3 - 4*t372 -
15%£272%£372 - T*£274*t37°2 — 37*t276%t372 - t278*t372 +
16*t2*t373 + 60*t273*t373 - 24*t275*%t373 + 12*t2"°7*t3"3
+ 4*t374 - 5*t272%t374 - 59%t274*%374 + 29*t276%t374 -
£278%t3%4 - 4*£2*t37°5 - 10*t273*t3°5 + 24*t2°5%t3"5 -
10*£277%£375 - £272*%t376 + 3*t274*t376 - 3*t276*t3"6 +
t278*t3%6

8*£278*t3%4 - 11*t2*t3"5 + 103*t273*t3°5 -
298*t27°5%t375 + 79*t277*t375 + 3*t279*%t3"5 - 8*%t376 +
44%£272%£376 — 156%t274*t376 + 184*t276%t376 -
16*£278*t3%6 + 18*t2*t3°7 - 16*t27°3*t3"7 + 79*t275*t3"7
- 46*t277*E377 4+ £279%t377 - 4*t272%t378 - 8*t274%t378
- 16*t276%t378 + 4*£278*t378 + t2*t3"9 - t273*t3"9 +
3*%£2°5%£379 + t277%t37°9

e !

R



S T

h
-

05

rrerrrr Ll

h
—

06

R

.
-

07

rrer Ll

h

108

R

= 10*%t276 + 6*t278 + 30*t275*t3 + 14*t2"7*t3 +
61*t274*t372 + 42%t276%t372 + t278*t372 + T2*t273*t3"3
+ 40*t275%t373 - 32*t277*t373 + 75%t272*%t374 +
S1*t274*£374 - 47%t276%t374 + t278*t374 + 44*t2*t3°5 -
16*£273*£375 - 112*t275%t375 - 20*%t2°7*t3"5 + 32*t376 +
S59*E272*£376 + 13*t274*t376 + 17%t276*t376 +
TE278%£3%6 - 8*t2*t377 - 152*%t273*t377 - 128*t275%t3"°7
+ 16*t277*t3%7 + 28*t378 + 21*t272*t378 + 109*t274*t3"8
+ 133*%t276*£378 - 3*t27°8*t3"8 - 20*t2*t3"9 -
32%£273%£379 - 38%t27°5%t379 - 42*t277*t379 + 4*t3710 +
5%t272*t£3710 + 6*t274*t3710 + 5*t276*t3710 +
4*%£2°8%£3710

= 32%t276 + 28*t278 + 4*t2710 + 44*t275%t3 - 8*t277*t3
- 20%t279%t3 4+ T5*L274*E372 + 59*t276*t372 +
21%t27°8*t372 + 5*t2710%t372 + T2*t2°3*t3"3 -
16*£275%£373 - 152*t277*t373 - 32*t279*t3°3 +
61*t272*t374 + 51%t274*t374 + 13*t276*t374 +
109%t27°8*t374 + 6*t2710%t374 + 30*t2*t3°5 +
40*£273*%£375 - 112*t275%t3"5 - 128*t2"7*t3"5 -
38*£279%t375 + 10*%t376 + 42*%t272*t376 - 47*t274%t376 +
17*£276%t376 + 133*t278*t376 + 5*t2710*t376 +
14*£2%£377 — 32%t273*%t377 — 20%t27°5*t377 + 16*t277*t3"°7
- 42%£279%t377 + 6%t378 + t272*t378 + t274*%t378 +
T*L276%£378 - 3*t278*t378 + 4*t2710*%t378

= -22%t274 - 10*t276 - 44*£273%t3 + 14*t275%t3 +
10*£277%63 - 114%t272%£372 + 15%t274*t372 +
20%t276%£372 - t278*%t372 - 92*t2*t3°3 + 224*t273*t373 +
108*t275%t3"3 — 16*t277*t373 - 52*t374 + 121*t27°2*t3"4
- 115%t274*t374 - 101*%t276*t374 + 3*t278*t374 +
96*t2*t3"°5 + 88*t273*t375 - 12*t275*%t375 + 28*t277*t3"5
- 28%t376 - 63*t272*t376 - 237*t274*t376 + 27*t276*t376
- 3*t278*t376 + 60*t2*t377 + 24*t£273*t377 +
148*%£27°5%t3"7 — 8*t277*t3"7 - 41*t272*%t3"8 -
THE274%£378 - 33*t276*t378 + t278*t378 + 12*t273*t379 -
2%E275%€379 + 2%t277%£379 + t272%t3710 - 2%t274*t3710 +
t276*t3710

= -52%t274 - 28%t276 - 92*t273*t3 + 96*t2°5*t3 +
60*t277*t3 — 114*t272*%t372 + 121*t274*t3°2 -
63*t276%t372 - 41*t278*t372 + t2710*%t372 - 44*t2*t3°3 +
224%£273%t373 4+ 88*t275%t373 + 24*t277*t3"3 +
12%£279%£373 - 22*t374 + 15%t272%t3%4 - 115%t274*t374 -
237*t276%t374 - 7*t278%t374 - 2*t2710*t374 + 14*t2*t3°5
+ 108*t27°3*t3"°5 - 12%t2°5%t3"5 + 148*t2°7*t3"5 -
2%£279%t375 - 10%t376 + 20*%t272*t376 - 101*t274*t376 +
27*6276*t376 — 33*t278*t376 + t2710%t376 + 10*t2*t3°7 -
16*£273*%£377 + 28*t27°5%t3"77 — 8*t277*t377 + 2*t279*t3"°7
- £272%t378 + 3*t274%t37°8 - 3*t276*t378 + t27°8%t378

= 8%t276 + 37*t275*t3 - 6*t277*t3 + t279*t3 +
S5T*£274*£372 - 50*%t276*t372 + £278%t372 + 40%t2°3*t3"3
- 31%t275%t373 + 34*t277*t373 + t279%t373 +
20%t27°2*t374 + 89%t274*t3%4 - 34*t276*t374 -
15%£278*£374 + 79*%t273*t375 - 176*t275%t3"5 +
35%£2°7%£375 + 2%£279%t375 + 37*t272%t376 -
42%£274%£376 + 85%t276*t376 — 12%t278%t376 - 8*t2*t3"7
+ 18%E273%E377 - 67*t275%t377 - 4*t277*£377 + t279*%t377
- 2*t378 + 34%t272*t378 - 43*t274*t378 + 60*t276%t378 -
S5*¥t278*t378 + 2*t2*t379 - 21*t273*t379 + 13*t27°5*t379 -
15%€277*£379 + £279*t379 + £272%t3710 + 3*t274*t3710 -
£276*t37°10 + t278*t3°10
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= -2%t278 - 8*t277*t3 + 2*t279*t3 + 20*t274*t3"2 +
37*t276*t372 + 34*t278*%t372 + t2710%t372 + 40*%t273*t3"3
+ 79%£275%t373 + 18*t277*%t373 - 21%t27°9%t3°3 +
S5T*£272*t374 + 89*t274%t374 - 42*t276*t374 -
43*t278*t3%4 + 3*t2710*t374 + 37*t2*t3"5 - 31*t273*t3"5
= 176%t275%t375 - 67*t277*t375 + 13*t279*t3"5 + 8%t3°6
- 50%t272%t376 - 34*t274*t376 + 85%t276*t376 +
60*t278*t3%6 - t2710%t376 - 6*t2*t3"7 + 34*t273*t3°7 +
35%t275%E377 — 4*t27°7%t£377 - 15%t279%t377 + t272*%t37°8 -
15%£274%£3%8 - 12*t2°6*t3"8 — 5*t278*t378 + t2710*t3"8
+ E2%6379 + £273%t379 + 2*t275%t379 + t277*t379 +
£279%t379

= 25%t274 + 24*t276 + 3*t27°8 + 50*t273*t3 + 22*t275%t3
= 12%€277%t3 + 105%t272%£372 + 89*t274*t372 +
THL276*372 + 3*t278*t372 + 80*t2*t373 - 32*t273*t373 -
136*t275%t373 — 24*t277*t373 + 64*t374 + 89*t272*t3"4 +
59%t274*£3%4 + 63*t276*t374 + 5%t278%t374 - 44*t2%t3°5
= 244%£27°3%£375 - 184*t275%t375 - 16*t277*t3"5 +
68*t376 + 91*t272*t376 + 187*t274*t376 + 141*t276*t376
+ £278*%t376 - 104*t2*t377 - 160*t273*t3"7 -
96*t275%t3%7 — 40*t2°7*t3"7 + 12%t378 + 79%t272*t378 +
116*t274*t3%8 + 33*t276*t378 + 4*t278*t3"8 - 12*t2*t3"9
- 30*t273*t379 - 38*t275%t3"9 - 4*t2°7*t379 +
4%£272%£3710 + 4*t274*t3710 + 4*t276%t3710

= 64*t274 + 68*t276 + 12*t278 + 80*t273*t3 -
44%£275%t3 - 104*t27°7*t3 - 12*%t279%t3 + 105*t272*t372 +
89*L274*£372 + 91*t276%t372 + 79*t278*t372 +
4*%£2710%£372 + 50*t2*t37°3 - 32*t273*t37°3 -
244%£27°5%t373 - 160*t277*£3"3 - 30*t279*t3"3 + 25*t374
+ 89*t272%t374 + 59%t274*t3%4 + 187*t276%t374 +
116*t278*t374 + 4*£2710%t374 + 22*t2*t3"5 -
136*t273*t375 - 184*t2°5%t3"5 - 96*t277*t3"5 -
38*%£279%t375 + 24*t376 + T*t272%t376 + 63*t274*t376 +
141%£276*3%6 + 33*t27°8*t376 + 4*t2710*t376 -
12%€2%£377 - 24*t27°3*t377 - 16*t27°5%t3"7 - 40%t2"7%t3"7
= 4¥t279%t377 + 3*t378 + 3*t272%t378 + 5*t274*t3°8 +
£276%t378 + 4*t278*t3°8

= -52*%t274 - 28*t276 - 116*t273*t3 + 48*t275%t3 +
S52%£2°7*t3 - 150%t27°2*t372 + 33*t274%t372 + t276*t372 -
29%t278*£372 + t2710*t372 - 116%t2*t3"3 + 56*t27°3*t3"3
+ 248*t275%t373 + 24*t277*t373 + 12%t279%t3°3 - 52*t374
+ 33*t272%t374 4+ 208*t274*t374 - 222%t276*t374 -
12*%t278*t374 - 3*t2710*t374 + 48*t2*t3"5 +
248*t273%t3"°5 + 40*t2°5%t375 + 56*t277*t3"5 -
8*L279%t375 - 28*t376 + t272%t376 - 222*t274%t376 -
372%£276%t376 - 6*t278*t376 + 3*t2710*t376 + 52*t2*t3"7
+ 24%£273%€377 + 56*t275%£377 + 280*t277*t3°7 +
A*¥£279%E37T - 29%£272*t378 — 12*t274%t378 - 6*t276*t3"8
- 80*t278*t378 - t2710*t378 + 12*t2°3*t3"9 -
8*L275%£379 + 4*t277*t379 + 8*%t279%t379 + t272*t3710 -
3*%£274*£3710 + 3*t276*t3710 - t2°8*t3710
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113 = 32*t276 + 28*t27°8 + 4*t2710 + 148*t2°5*t3 +

104*%£277%63 + 4*t£279%t3 + 335%t274*t372 + 223*t276*t3°2
- 11%£278*t3%2 - 3*t2710*t3"2 + 428*t273*t3°3 +
244%£27°5%£373 - 156*t277*t373 - 36*%t279*t3"3 +
335%t272*t374 + 260%t274*t3%4 - 230*t276*t374 -
36*%t£278*%t374 + T*t27°10*t374 + 148*t2*t3°5 +
244*%£273*%€375 - 356*t275%t375 - 212%t277*t375 +
16*£279*%£375 + 32%t376 + 223*t272*t376 - 230*t274*t376
- 128*t276*t376 + 182*t278*t376 + t2710*t376 +
104%£2%€£377 - 156*%t273*t377 - 212*t275%t377 +
76*£2°7*£3%7 - 36*t279*t377 + 28%t378 - 11*t272*t3°8 -
36*t274*t378 + 182*t276*t378 + T6*t278*t378 +
£2710%t378 + 4*t2*t£379 - 36*t27°3*t379 + 16*t275*t379 -
36%t277%£379 - 44%t279%t379 + 4*t3710 - 3*t272*t3710 +
7*£274*£3710 + t276*t3710 + t278*t3710 + 6*t2710*t3°10

= 77*t276 + 24*t278 + 3*t2710 + 231*t275*t3 -
58*t277*t3 — 9*t279%t3 + 489%t274*t372 - 135*t276*t3"2
+ 13*t278*t372 - 3*t2710*t372 + 593*t273*t3°3 -
591*%t27°5%t3"3 — 241%t277*t373 - 17*t27°9*t3"3 +
489*%t272*t374 — 667*t274%t3%4 + 25%t276*t374 +
243*%£278*t374 + 6*t2710%t374 + 231*t2*t375 -
591%£27°3%£3"5 - 311*t27°5*%t3"°5 + 267*t277*t3"5 -
68*t279*t3"5 + T7*t376 - 135*%t272*t376 + 25*t274*t3"6 +
1045*t276*t376 — 146*t278*t3"6 + 6*t2710*t3"6 -
58*t2*t377 - 241%t273*t3"7 + 267*t275%t3"°7 -
799*t277*£3%7 + 31*t279*t377 + 24*t378 + 13*t272*t378 +
243*t274%£378 - 146*t276*t3"°8 + 277*t278*t3"8 -
3*%£2710%t378 - 9%t2*t379 - 17*t27°3*t3"°9 - 68*t2°5%t3"9
+ 31%£277*£3%9 - 45%t279%t379 + 3*t3710 - 3*t272*t3710
+ 6%t274%£3710 + 6*t276*t3710 - 3*t278*t3710 +
3*%£2710*t3710

= -92*t274 + 12*t278 - 172*t2°3*t3 + 220*t2°5*t3 +
92*t277*t3 - 12*%t279%t3 - 201*t272*t372 + 182*t274*t3"2
+ 80*t276%t3%2 - 126*t278*t372 + t2°10*t3"2 -
172*%£2%£373 + 168*t2°3*t3"3 + 544*t2°5%t3°3 -
456%t277%E373 + 44*t279*t373 - 92*t374 + 182%t272*%t374
+ 488*t274*£374 - 1332%t276*t3"4 + 340*t278*t374 -
2%£2710*t374 + 220%t2*t375 + 544*t2°3*t3"5 -
1224*£27°5%£375 + 1184*t277%£3"5 - 84*t279*t375 +
80*t272*t376 - 1332*t274*t376 + 1308*t276*t376 -
508*t27°8*t3"6 + 4*t2710%t376 + 92*t2*t3°7 -
456%t273%t3"7 + 1184*t275%t377 - 792%t277*t3°7 +
100%£279%£377 + 12*t378 - 126%t2°2*t3"8 + 340*t274*t3°8
- 508*t276*t3"8 + 272*t278*t378 - 6*t2710*t3"8 -
12%£2%£379 + 44*t273*t379 - 84*t275*%t379 +
100%£277%£3%9 - 48*t279*t379 + t272*t3710 -
2%£274*%£3710 + 4*t276%t3710 - 6*t278*t3710 +
3*%£2710%t3710
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116 = 64*t274 + 68*t276 + 12*t2°8 + 176*t27°3*t3 +

68*L275%t3 — 72*t277*t3 - 12*t279%t3 + 249%t272*t3°2 +
97*£274%£372 - 9*t276*t372 + 43*t278*t372 +
4%£2710%t372 + 176%t2*t373 + 20%t2°3*t3°3 -
180*t275%t3"3 - 100*t277*t373 - 12*t279*t3"3 + 64*t374
+ 97*£272%£374 4+ 12%t274*%£374 + 190*t276%t374 +
100*£278*t374 + t2710*t374 + 68*t2*t375 - 180*t2"3*t3"5
- 188*t275%t375 - 204*t277*t3"5 - 40*t279*t3"5 +
68%t376 — 9*t272*t3%6 + 190*t274*t376 + 260*t276*t376 +
110*t278*t376 + 5*t2710*t376 - 72*t2*t3°7 -
100*£273*£3"7 - 204*t275%t3"7 - 268*t2"°7*t3"7 -
28*%£279%£377 + 12*t378 + 43*t272*t378 + 100*t274*t378 +
110*t276*t378 + 148*t278*t3"8 + 3*t2710*t3"8 -
12%£2%£379 - 12*t273*t379 - 40*t2°5%t3"9 - 28*t277*t3"9
- 36%t279%t379 4+ 4*£272*t3710 + t274*t3710 +
5%£276*t3710 + 3*t27°8*t3710 + 3*t27°10*t3"10

= -2%t2710 - 10*t279*t3 + 2*t2°11*t3 + 105*t278*t3"2 +
38*t2710%t37°2 + t2712*t372 + 480*t277*t3"3 -
90*t279%£3%3 - 22*t2°11*t3"3 + 990*t276*t3"4 -
734*t278*t374 + 8*t2710%t3%4 + 2*t2712*t374 +
1248*t£27°5%£3"°5 - 2096*t277*t375 + 348*t279*t3°5 +
4*%£2°11%£375 + 990*t274*t3%6 - 2988*t276%t376 +
1806*t27°8*t376 — 32*t2710*t3"6 + 480*t273*t3"7 -
2096*t275%t377 + 3008*t277*t3"7 - 804*t2"9*t3"7 -
12%€2711*t377 + 105%t27°2%t37°8 - 734*t274*t378 +
1806*t276*t378 - 1580*t278*t3"8 + 195*t2710*t3"8 +
2%£2712%£378 - 10*t2*t379 - 90*t273*t379 +
348*t27°5%t379 - 804*t277*t379 + 444*t279*t379 -
24*%£2°11*t379 - 2*t3710 + 38*t272*t3710 + 8*t274*t3710
- 32*t276%t3710 + 195*t278*t3710 - 64*t2710*t3710 +
£2712*%t3710 + 2*t2*t3711 - 22*t273*t3711 + 4*t27°5*t3711
- 12%t277*t3711 - 24*t279%t3711 + 4*t2711*t3°11 +
t272%t3712 + 2*t274*t3712 + 2*t278*t3712 + t2710*t3712

= 41%t274 + 80*t276 + 34*t27°8 - 24*t2710 - 3*t2°12 +
82*%t273*%t3 4+ 76*t2°5%t3 - 104*t277*t3 - 188*t279*t3 +
6%t2711%t3 + 237%t272%t372 + 218*t274%t372 -
218*t276*t372 - 232*t278*t3"2 + 181*t2710*t3"2 +
6%t2712%£3%2 + 196*t2*t373 - 452*t273*t3"3 -
1160*t27°5%t3"3 - 88*t2"°7*t3"3 + 516*t279*t3"3 -
36*%t27°11%t373 + 92%t374 - 454*%t2°2*t374 - 60*t274*t374
+ 1668*t276*t374 + 660*t278*t3%4 - 302*t2710*t3%4 -
4*£2712%t3%4 - 332%t2*t37°5 + 152*t273*t375 +
640*t275*t3"5 - 1000*t277*t3"5 - 660*t279*t3"5 +
48*%t2°11*t3"°5 + 508*t272*t3"6 + 306*t274*t3%6 -
576*t276*t376 + 92*t278*t376 + 244*t2710%t376 +
2%E2712%E376 — 4*t2*t377 - 444*t273%t377 -
248*t£27°5%t3"°7 + 280*t277*t3"7 + 188*t279*t3"7 -
28*%£2°11*t3"77 - 12%t378 - 18*t272*t378 + 235*t274*t3"8
+ 28*t276*t378 - 86*t278*t378 - 82*t2710*t378 -
£2712*%£378 + 12*t2*t379 + 22%t27°3*t379 - 76%t275*%t379 +
16%£277%£379 + 16*t279*t3"9 + 10*t2711*t3°9 -
£272%€3710 - 4*t274*t3710 + 10*t2°6*t3°10 -
4*£278*t3710 - t2710*t3710



e

e

119 = 92*t274 - 12*t278 + 196*t2°3%t3 - 332*t275*t3 -

A*E277*E3 4+ 12%E279%E3 + 237*t272%t372 - 454*t274%t372
+ 508*t276*t372 - 18*t278*t372 - t2°10*t3"2 +
82*t2*t373 - 452%t273*t3"3 + 152*%t275*%t3"3 -
444%£27T7%E373 + 22%t279%t373 + 41*t374 + 218*t272*t374
- 60%t274*£3%4 + 306*t276*t374 + 235%t278*t374 -
4*%£2710%€374 + 76*t2*t375 - 1160*t273*t3"5 +
640%t275%3%5 — 248*t277*t3"5 - 76*t279*t3"5 + 80*t3"6
- 218*t272*%t376 + 1668*t274*t3"6 - 576*t276%t376 +
28%t27°8%t376 + 10*t2710*t376 - 104*t2*t377 -
88*t273*t3"7 - 1000%t275*t3"7 + 280*t277*t3"7 +
16*£279*%£377 + 34*t378 - 232*t272*t3"8 + 660*t274*t3"8
+ 92%t276*t378 - 86*t278*t37°8 - 4*t2710*t378 -
188*t2*t3%9 + 516*t2°3*t3"9 - 660*t275*t3"9 +
188*t277*t379 + 16*t279*t379 - 24*t3°10 +
181%£27°2%£3710 - 302*t274*t3710 + 244*t276*t3710 -
82*t278*t3710 - t2710*t3710 + 6*t2*t3"11 -
36*%t273*t3711 + 48*t275%t3711 - 28*t277*t3"11 +
10*£279%€3711 - 3*t3712 + 6*t272*t3712 - 4*t274%t3712 +
2*%t276*t3712 - t278*t3"12

= 19%t278 + 14*t2710 + 3*t2712 + 76*t277*t3 +
32%t279%€3 + 4*t2711%t3 + 244%t276*t372 + 116*t278*t372
- 4*t2710%t3%2 - 4*t2712%t372 + 466%t275%t373 +
34*£277*%£373 - 250%t279%£373 - 26*t2°11*t3"3 +
ST7*£274%£3%4 - 98*t276*t374 - 369*t278*t374 +
112%t2710%t374 + 6*t2712*t374 + 466*t273*t3"°5 -
196*t27°5%t3"5 - 576*t2°7*t3"5 + 100*t279*t3"5 -
18*£2711%E375 + 244*t272%t376 - 98%t274*t376 -
532*t276*t376 + 368*t278*t3%6 + 112*t2710*t376 +
2%£2°12*t376 + 76*t2*t377 + 34*t273*t3°7 -
576%t27°5%t3"7 + 196*t27°7*t3"7 + 68*t279*t3"7 -
54*t£2°11*t3"77 + 19*t378 + 116*t272*t37°8 - 369*t274*t3"8
+ 368*t276*t378 + 474%t278%t378 - 122*t2710%t378 +
6%t2712%t378 + 32%t2*t3"9 - 250*t273*t379 +
100%£27°5%t379 + 68*t277*t3"9 - 516*t279*t3"9 +
38*%t2711*t379 + 14*t3710 - 4*t272*t3710 +
112%£274%£3710 + 112*t276*t3710 - 122*t27°8*t3710 +
212*t2710%t3710 - 4*t2712*t3710 + 4*t2*t3711 -
26*t273*t3711 - 18*t275*t3711 - 54*t277*t3711 +
38*£279%t3711 - 40*t2711%t3711 + 3*t3712 - 4*t2°2*t3712
+ 6%t274%t3712 + 2%t276*t3712 + 6*t278*t3712 -
4*£2710%£3712 + 3*t2712*t3712

h

A

12

1 = 69%t276 + 50*t278 + 5*t2710 + 207*t2"°5%t3 -

THE27T*E3 - 75%E279%t3 — 5*t2711%t3 + 495%t274*%£372 +
167*£276*£3%2 + 43*t27°8*t372 + 53*t2710*t372 +
2%£2712%£372 + 645%t273%t373 - 109%t27°5%t3°3 -
649%t2°7*£3"3 - 151*t279*t373 - 16*t2"11*t3"3 +
495%£272%t374 - 202*t274*%£374 - 442%t276%t374 +
615*t278*t3%4 + 129%t2710*t374 + t2712*t374 +
207*t2*t3%5 - 109*t27°3*t3"5 - 680*t2"5%t3"5 -
60*t277*t375 - 351*t279*t375 - 47*t2711*t3"5 + 69*t376
+ 167%t272%t376 — 442%t274%t376 + 392*%t276*t376 +
599%t278*t376 + 121*t2°10*t3"°6 + 6*t2712*t3%6 -
THL2*£377 - 649*%£273*t377 - 60*t275%t377 + 84*t2°T7*t3°7
- 485%t279%t377 - 19*t2711%t3"7 + 50*t3°8 +
43*%t£2°2*%£3"°8 + 615*t274*t378 + 599*t276*t3"8 -
44*£278*t378 + 180*t2°10*t3"8 + t27°12*t37°8 - 75*t2*t3"9
- 151%t273*t379 - 351%t27°5%t3"9 - 485*t2"°7*t3"9 -
34*%£27°9%£379 - 32*t2711%t379 + 5*%t3710 + 53*t272*t3710
+ 129%t274*£3710 + 121%t276*t3710 + 180*t278*t3710 +
14*£2710*t3710 + 2*t2712*t37°10 - 5*t2*t3°11 -
16*£273*£3711 - 47%t27°5%t3711 - 19*t2"7*t3"11 -
32%t279%t3711 - t2711%t3711 + 2*t272*t3712 + t274*t3712
+ 6*t276*t3712 + t278*t3712 + 2*t2710*t3"12

£122 = 150%t276 - 44*t2°8 - 10*t2710 + 450*t2°5*t3 -

R

626*t277*t3 + 38*t279*t3 + 10*t2°11*t3 + 981*t274*t372
- 1718*t276*t372 + 860*t278*t372 + 22*t2710*t37°2 -
£2712*%£372 + 1212%t273*t3%3 - 3962*t275%t3°3 +
2722*£277%£373 - 462*t279%t373 - 22*t2711*t3°3 +
981*t272*t374 - 4796*t274*t374 + 6934*t276*t374 -
2218*t278*t3%4 + 57*t2°10*t3"°4 + 2*t2712*t374 +
450%t2*£375 - 3962%t273*t375 + 8072*t275%t3°5 -
6760*t2"7*t3"5 + 902*t279*t3"5 + 18*t2711*t3"°5 +
150%t376 - 1718*t272*t376 + 6934*t274*t3%6 -
7752*t276%t376 + 3894*t278*t376 - 130*t2710*t3"6 -
2%E2712%E376 — 626%t2*t377 + 2722%t273*t377 -
6760*t27°5%t3"7 + 4920*%t2"7*t3"7 - 1270*%t279*t3"7 -
10*t2711*t377 - 44*t378 + 860*t27°2*t3"8 -
2218*£274*£378 + 3894*t276%t378 - 2208*t278*t378 +
194*£2710*t378 + 2*t2712*t378 + 38*t2*t3"9 -
462*t27°3*t379 + 902*t275%t3"9 - 1270*t277*t3"9 +
668*t279*t379 — 4*t2711*t379 - 10*t3710 + 22*t272*t3710
+ 57*t274*£3710 - 130*t276*t3710 + 194*t278*t3710 -
116*t2710*t3710 - t2°12*t3710 + 10*t2*t3"11 -
22%t2°3*t3711 + 18*t2°5%t3711 - 10*t2"7*t3"11 -
4*%£279*%3711 + 8*t2711%t3711 - t272*t3712 +
2%E274%3712 - 2*t276*t3712 + 2%t278*t3712 -
£2710%t3712



h
=

e

)
w

= -272*t276 - 104*t2"8 - 8*t2710 - 816*t2"5*t3 +
400*t277%t3 + 168*t279*t3 + 8*t2711*t3 - 1983*t274*t3"2
+ 1060*t276*t372 - 66*t278*t372 - 68*t2710*t3"°2 +
£2712%t372 - 2606%t27°3*t3"°3 + 4408*t275%t373 +
1004*t27°7*£373 - 80*t279*t3"3 + 10*t2"11*t3"3 -
1983*t272*t374 + 5968*t274*t3"4 - 2562*t276*t3"4 -
2404%£278*t374 + 25%t2710%t3%4 - 4*t2712%t374 -
816*t2*t375 + 4408*t273*t3"5 - 2904*t275*t3"5 -
920%£277*£3%5 + 1496*t279*t3°5 - 16*t2"°11*t3"5 -
272*%t376 + 1060%t27°2*t3"6 - 2562*t274*t3%6 -
4088*t276*t376 + 1644*t27°8*t376 - 396*t2710*t376 +
6%t2712*t376 + 400*t2*t3"7 + 1004*t273*t3"°7 -
920*t275*t377 + 6608*t2°7*t3"7 - T12*t279*%t3"°7 +
52*%t2711*t3"7 - 104*t378 - 66*t272*t3"8 -
2404%£274%£378 + 1644*t276%t378 - 4008*t278*t378 +
142%£27°10%£378 - 4*t2712*t37°8 + 168*t2*t3"9 -
80*t273*t379 + 1496*t275*%t379 - T12*t277*t379 +
1208*t279*t3"9 - 16*t2711*t3"9 - 8*t3"10 -
68*t272*t3710 + 25%t274*t3710 - 396*t276*t3710 +
142%£27°8*t3710 - 176*t2710*t3710 + t2712*t3710 +
8*t2*t3711 + 10*t273*t3"11 - 16*t275*t3711 +
52*t277*€3711 - 16*t279*t3711 + 10%t27°11*t3711 +
£272%£3712 - 4*t274%E3712 + 6*t276%t3712 - 4*t278*t3712
+ £2710*t3712



