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Abstract. Associated with a triangle in the real projective plane are
three standard transformations: inversion in the circumcircle, isogonal
conjugation and antigonal conjugation. These are investigated in terms
of angular and related coordinates, and are found to be part of a group
of more general transformations. This group can also be identified with
a group of automorphisms of a real two-torus. The torus is in essence
the surface obtained by starting with the projective plane, perform-
ing blowups on the three vertices, and then collapsing the triangle’s
circumcircle and the line at infinity. Preservation of classes of triangle
centers by the action of a certain discrete subgroup is also investigated.
A conjecture concerning Hofstadter points is proved as an immediate
consequence of this viewpoint.
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1. Introduction

Advancement in the understanding of “triangle geometry” and, in particular,
the interesting centers associated with a given triangle, has benefited greatly
from the introduction of special coordinate systems. This is especially true
of trilinear and barycentric coordinates, which are of course related to each
other by means of simple scalings. Less known is the angular coordinate
system associated with a triangle, though this notion has appeared in the
literature for more than a century (cf. [3]).

To date, angular coordinates have only found applications in a rather
limited number of circumstances. It is the intention of this article to lay out
a fairly broad theory for which these coordinates are an especially natural
choice, and to focus particular attention on the associated singularities. Upon
resolving these singularities, a number of elegant results are easily revealed.
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Some of these have already been discussed elsewhere, in other terms, but
many appear to be new.

For instance, our research explores a certain two-dimensional continuous
group of transformations of the plane, which is shown to include some stan-
dard involutions, namely, isogonal conjugation, antigonal conjugation and
inversion in the circumcircle. A discrete subgroup of this group, containing
these three involutions, has an orbit consisting almost entirely of Hofstadter
points and similar points. Moreover, the elimination of the singularities that
naturally occur as a result of using angular coordinates produces, as a bonus,
a demonstration of Dyck’s famous result on the topological equivalence of
two surfaces. And so forth.

A new coordinate system is also introduced in this article. These “tri-
cyclic” coordinates are closely related to angular coordinates, but have the
advantage of being rationally related to trilinear and Cartesian coordinates.
As with trilinear coordinates, it is useful to study both an exact version and
a homogeneous version of the tricyclic coordinate system. Exact trilinear and
tricyclic coordinates are quite different, but surprisingly, the corresponding
homogeneous coordinates are reciprocals.

Section 1 of this paper introduces basic concepts, notation and con-
ventions used throughout the paper, along with some preliminary results.
Section 2 explores further the concepts of angular and tricyclic coordinates
within the framework introduced in Section 1. Particular focus is placed on
circles that pass through a pair of triangle vertices. Included here is a theorem
that connects this framework to a generalization of a construction introduced
by D. Hofstadter and C. Kimberling [6]. Section 3 looks at the three involu-
tions mentioned earlier, and provides a rapid proof of a theorem that relates
these, and which was previously proven by D. M. Bailey [2] and independently
by J. Van Yzeren [10].

Section 4 identifies the singularities inherent in the usage of angular co-
ordinates, and carefully details constructions meant to eliminate these. The
angular coordinates are here treated as coordinates for a three-dimensional
torus, and then restricted to a two-dimensional sub-torus. Section 5 intro-
duces a group of birational transformations of the plane that can be iden-
tified with simple transformations of the two-dimensional torus. In fact, the
latter constitute the group of isometries of the universal cover of the torus,
consisting of translations and reflections. The involutions mentioned earlier
correspond to three of these reflections. This group contains a certain dis-
crete subgroup, and its action on regular and polynomial triangle centers is
investigated. This is then used to prove an outstanding conjecture concerning
Hofstadter points.

1.1. Notation and Conventions

Let A, B, and P be points in the plane. Define the directed angle ]APB
to be the angle through which the line

←→
AP can be rotated about P to coin-

cide with the line
←→
BP . The angle is signed, with positive values indicating
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counterclockwise rotation, and is only well-defined modulo π. Any equation
involving directed angles should be considered modulo π.

We record some immediately observed properties of directed angles be-
low:

Lemma 1.1. Let A, B, C, and P be points in the plane. Then

(i) ]APB = −]BPA,
(ii) ]BAC + ]CBA+ ]ACB = 0,
(iii) ]APB + ]BPC + ]CPA = 0.

The inscribed angle theorem can be written in terms of directed angles
as follows:

Lemma 1.2. Let A, B, P , and Q be points in the plane. Then A, B, P , and Q
are concyclic if and only if ]APB = ]AQB if and only if ]PAQ = ]PBQ.

Proof. The key difference from the traditional inscribed angle theorem can
be seen as follows: If P and Q are on opposite sides of a chord AB of a circle,
then ∠APB = π−∠AQB. But the directed angles ]APB and ]AQB must
have opposite orientation in this case, so ]APB = π+]AQB = ]AQB. �

We will fix a triangle ∆ABC with circumcenter O and circumradius
R and with A, B, and C not collinear. The interior angles at A, B, and C
will be denoted by θ1, θ2, and θ3, respectively. We will write Li = R sin θi
and Mi = R cos θi. Observe that Li is half the length of its corresponding
edge and Mi is the signed distance from O to the corresponding edge. This
is shown in Fig. 1.

C

A
O

R

M1

L1

θ1 θ1

Figure 1. The quantities L1 and M1. For this triangle,
M1 > 0.

A subscript used to indicate an edge or vertex of ∆ABC may be dropped
when it can be understood from context. Subscripts may also be dropped
in expressions that would be written the same way for each subscript. For
example, L = R sin θ means that Li = R sin θi for each i.

1.2. Bailey Circles

Circles which pass through two vertices of ∆ABC will be referred to repeat-
edly in what follows, so it will be convenient to use non-standard terminology
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and refer to any such circle as a Bailey circle1. To be specific, we will say that
a circle through A and B is a Bailey circle for the edge AB, and similarly
for the other edges. The sidelines of ∆ABC will be considered Bailey circles
with infinite radii.

A Bailey circle for an edge E of ∆ABC can be uniquely identified by the
location of its center along the perpendicular bisector E⊥ of E. A coordinate
may be assigned to any point on E⊥ by specifying its signed distance from
the circumcenter of ∆ABC, with the positive direction coinciding with the
outward-pointing normal to E. In this way, any configuration of Bailey circles,
one for each edge of ∆ABC, may be specified as a triple (c1, c2, c3): Let X,
Y , and Z be the centers of the Bailey circles for edges BC, CA, and AB,
respectively. Then let c1, c2, and c3 be the coordinates, as described above,
of X, Y , and Z, respectively.

Another method of specifying Bailey circles uses directed angles. Let
C1, C2, and C3 be Bailey circles for edges BC, CA, and AB, respectively.
Choose any point P1 6= B,C on C1, P2 6= C,A on C2, and P3 6= A,B on C3.
Then define

ψ1 = ]BP1C, ψ2 = ]CP2A, ψ3 = ]AP3B. (1.1)

By Lemma 1.2, these values are well-defined and uniquely specify each circle.
An individual Bailey circle can be specified by the value in Eq. (1.1) corre-
sponding to its edge, or a configuration of Bailey circles can be specified as
a triple (ψ1, ψ2, ψ3).

We now establish the relationship between c and ψ in Lemma 1.3 and
Lemma 1.4.

Lemma 1.3. cot(ψ) =
M − c
L

and cot(θ − ψ) =
M −R2 c−1

L
.

Proof. We prove the first assertion for the edge E = BC. Let C be a Bailey
circle for BC with center X. Let P and Q be the two points at which C meets
E⊥, chosen so that P and X are on the same side of BC. This is shown in
Fig. 2.

By the inscribed angle theorem, ∠BPC = 1
2∠BXC = ∠QXC. Observe

that the rotation of
←→
PB onto

←→
PC is a clockwise acute angle when c > M and

a counterclockwise acute angle when c < M , and similarly for the rotation

of
←→
XQ onto

←→
XC. Since ∠BPC and ∠QXC are oriented the same way,

ψ = ]BPC = ]QXC.

Now let σ = sgn(M−c) so that ]QXC = σ∠QXC and the absolute distance
from X to BC is σ(M − c). Then

cot]QXC = σ cot∠QXC = σ
σ(M − c)

L
=
M − c
L

.

1in recognition of D. M. Bailey’s investigations into these circles (cf. [2])
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Figure 2. A Bailey circle with radius r.

For the other equality,

cot(θ − ψ) =
cot(θ) cot(ψ) + 1

cot(ψ)− cot(θ)
· L

2

L2
=
M(M − c) + L2

L(M − c)− LM =
R2 −Mc

−Lc .

The last equality follows from the fact that M2 + L2 = R2. �

Lemma 1.4. c = R
sin(ψ − θ)

sin(ψ)
.

Proof. Replacing L = R sin θ and M = R cos θ in Lemma 1.3 yields

c = R cos(θ)−R sin(θ) cot(ψ)

= R
cos(θ) sin(ψ)− sin(θ) cos(ψ)

sin(ψ)

The result follows. �

Finally, we give a condition for neighboring Bailey circles to be tangent.

Lemma 1.5. Let C1 and C2 be Bailey circles for edges BC and CA, and let
ψ1 and ψ2 be their respective ψ-coordinates. Then C1 and C2 are tangent if
and only if ψ1 + ψ2 = −θ3.

Proof. From Fig. 2, one can deduce that

]OCX = ]OCB + ]BCX

= (π/2− θ1) + (π/2 + ψ1) = ψ1 − θ1.

By a symmetrical argument, ]OCY = −(ψ2 − θ2). Therefore

]Y CX = ]Y CO + ]OCX

= (ψ2 − θ2) + (ψ1 − θ1) = ψ1 + ψ2 + θ3.

But C1 and C2 are tangent precisely when ]Y CX = 0. �
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1.3. Angular and Tricyclic Coordinates

Observe that if P 6= A,B,C, then there is exactly one configuration of Bailey
circles such that each Bailey circle passes through P .

This suggests defining coordinates on the plane by specifying the config-
uration of Bailey circles induced by each point. Such coordinates are partic-
ularly useful when considering those transformations of the plane which send
each Bailey circle to another—this includes antigonal conjugation, isogonal
conjugation, and inversion in the circumcircle, as we will see in Section 3.

Let P 6= A,B,C be the common intersection of a configuration of Bai-
ley circles. Setting P1 = P2 = P3 = P in Eq. (1.1) yields a triple (ψ1, ψ2, ψ3)
called the angular coordinates of P . In [3, Chapter II] and [9], angular co-
ordinates are defined similarly, but only for points inside ∆ABC, and using
the absolute angles ∠BPC, ∠CPA, and ∠APB.

Another possible coordinate system uses the triple (c1, c2, c3), defined
above, to specify the configuration of Bailey circles. It will be convenient to
use non-standard terminology and refer to (c1, c2, c3) as the exact tricyclic
coordinates of P . For any λ ∈ R∗, we will refer to (λc1 : λc2 : λc3) as the
homogeneous tricyclic coordinates of P .

As we will see in Eq. (2.7) and Eq. (2.8), tricyclic coordinates are ratio-
nally related to trilinear, barycentric, and Cartesian coordinates. The rela-
tionship between angular and tricyclic coordinates is described by Lemma 1.3
and Lemma 1.4.

Remark 1.6. Note that

(i) Points not on the circumcircle have unique, well-defined angular and
tricyclic coordinates, with the caveat that points on the sidelines have
one infinite tricyclic coordinate.

(ii) Points on the circumcircle other than A, B, and C cannot be distin-
guished using angular or tricyclic coordinates.

(iii) If P = A, B, or C, then there are infinitely many configurations of
Bailey circles such that each Bailey circle passes through P . Hence P
does not have well-defined angular or tricyclic coordinates.

These issues are analyzed in detail in Section 4.

2. Properties of Angular and Tricyclic Coordinates

2.1. Exactness

Proposition 2.1. If (ψ1, ψ2, ψ3) are the angular coordinates of a point P , then

ψ1 + ψ2 + ψ3 = 0. (2.1)

Proof. By definition,

ψ1 + ψ2 + ψ3 = ]BPC + ]CPA+ ]APB.

The right-hand side is 0 by Lemma 1.1. �

The following provides a partial converse.
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Proposition 2.2. Let ψ1, ψ2, and ψ3 be any triple of directed angles such that

ψ1 + ψ2 + ψ3 = 0.

Consider the configuration of Bailey circles given by (ψ1, ψ2, ψ3). Exactly one
of the following is true:

(i) All three Bailey circles are sidelines (ψ1 = ψ2 = ψ3 = 0),
(ii) At least one Bailey circle is the circumcircle and the other two are tan-

gent,
(iii) There is a common point of intersection P not on the circumcircle.

The case that all three Bailey circles are the circumcircle (ψ1 = θ1, ψ2 =
θ2, ψ3 = θ3) is a special case of (ii).

Proof. Clearly (i), (ii), and (iii) are each possible and are mutually exclusive.
We will show they are exhaustive. Let C1, C2, and C3 denote the Bailey circles
in the configuration for the edges BC, CA, and AB, respectively.

Suppose C1 and C2 intersect at a point P not on the circumcircle. Let

K be the circle APB and ψ̊ its ψ-coordinate. Then the angular coordinates

of P are (ψ1, ψ2, ψ̊), so by Proposition 2.1, ψ1 + ψ2 + ψ̊ = 0. Hence ψ3 = ψ̊
and C3 = K. This is case (iii).

If C1 and C2 intersect at a point on the circumcircle other than C, then
at least one of C1 and C2 must be the circumcircle. Given the condition that
ψ1 + ψ2 + ψ3 = 0, Lemma 1.5 implies that two Bailey circles are tangent if
and only if the other is the circumcircle. So this is case (ii).

Finally, if C1 and C2 intersect only at C, then they are either tangent,
which is case (ii), or they are both sidelines. If they are both sidelines, then
ψ1 = ψ2 = 0. This implies ψ3 = 0, which is case (i). �

Proposition 2.3. If (c1, c2, c3) are the exact tricyclic coordinates of a point P ,
then

R(L1c1 + L2c2 + L3c3) = L1c2c3 + L2c1c3 + L3c1c2. (2.2)

Proof. It is sufficient to show that Eq. (2.2) is equivalent to Eq. (2.1).
Let Θ = eiθ, so that RΘ = M + iL. Then

e2iψ =
cotψ + i

cotψ − i =
(M − c) + Li

(M − c)− Li =
RΘ− c
RΘ− c , (2.3)

where the middle equality follows from Lemma 1.3. Now let

ξ = (RΘ1 − c1)(RΘ2 − c2)(RΘ3 − c3).

Then

e2i(ψ1+ψ2+ψ3) =
(RΘ1 − c1)(RΘ2 − c2)(RΘ3 − c3)

(RΘ1 − c1)(RΘ2 − c2)(RΘ3 − c3)
= ξ/ξ.

Therefore Eq. (2.1) holds if and only if ξ/ξ = 1, or equivalently Im(ξ) = 0.
Observe that Θ1Θ2Θ3 = ei(θ1+θ2+θ3) = −1, so Im(Θ1Θ2Θ3) = 0. Also,

Θ1Θ2 = −Θ3, so Im(Θ1Θ2) = Im(Θ3) = L3; similarly, Im(Θ1Θ3) = L2 and
Im(Θ2Θ3) = L1. Expanding ξ and extracting the imaginary part yields

Im(ξ) = R(L1c2c3 + L2c1c3 + L3c1c2)−R2(L1c1 + L2c2 + L3c3).
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Setting this equal to zero and rearranging yields Eq. (2.2). �

Corollary 2.4. If P is not on the circumcircle and has homogeneous tricyclic
coordinates (c1 : c2 : c3), then it has exact tricyclic coordinates (Kc1,Kc2,Kc3),
where

K = R
L1c1 + L2c2 + L3c3

L1c2c3 + L2c1c3 + L3c1c2
. (2.4)

2.2. Construction from Tricyclic Coordinates

Let P be a point not on the circumcircle or sidelines of ∆ABC. Let X denote
the center of the circle BPC. The point X can be obtained by intersecting
the perpendicular bisectors of the chords PB and PC, and the exact tricyclic
coordinate c1 is equal to the signed length of OX. The other tricyclic coor-
dinates c2 and c3 can be obtained by constructing the center Y of the circle
CPA and the center Z of the circle APB, respectively, in the same way.

It follows that the triangle ∆XY Z formed by the three Bailey circle
centers is the antipedal triangle of ∆ABC with respect to P , scaled by 1

2 .
This construction is shown in Fig. 3.

O

A

B

C

P

X

Y

Z

c 1

c2

c
3

α2

α2

α3

α3

β1

β1

β3

β3

γ1γ1

γ2

γ2

Figure 3. ∆XY Z is half the antipedal triangle of ∆ABC
with respect to P .

Observe that in Fig. 3, the triangle ∆XY Z can be scaled relative to
O without changing P . Thus a point P can be constructed directly from
its homogeneous tricyclic coordinates. This is stated in terms of orthologic
triangles in Proposition 2.5.

Recall that triangles ∆ABC and ∆XY Z are said to be orthologic if

there exists a point P such that
←→
PA is perpendicular to

←→
Y Z,

←→
PB is per-

pendicular to
←→
ZX, and

←→
PC is perpendicular to

←→
XY . In this case P is called

the orthology center of ∆ABC with respect to ∆XY Z. This configuration is
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symmetric in the sense that, by a well-known classical result, there must exist
a point Q which is the orthology center of ∆XY Z with respect to ∆ABC.

Proposition 2.5. Let c1, c2, and c3 be any triple of non-zero real numbers.

Let X̊, Y̊ , and Z̊ have signed distances from O equal to c1, c2, and c3,
respectively, in the directions perpendicular to BC, CA, and AB, respectively,
so that O is the orthology center of ∆X̊Y̊ Z̊ with respect to ∆ABC.

Let P denote the orthology center of ∆ABC with respect to ∆X̊Y̊ Z̊.
Then P has homogeneous tricyclic coordinates (c1 : c2 : c3).

Proof. Let ∆XY Z be the antipedal triangle of ∆ABC with respect to P ,
scaled by 1

2 , as in Fig. 3. Then ∆ABC and ∆XY Z are orthologic with
orthology centers P and O, respectively. Since ∆ABC has orthology center P
with respect to both ∆XY Z and ∆X̊Y̊ Z̊, the latter two triangles must both

have sidelines perpendicular to
←→
AP ,

←→
BP , and

←→
CP ; hence, they are homothetic.

Since they both have orthology center O with respect to ∆ABC, they must
in fact be homothetic with respect to O. So ∆XY Z is equal to ∆X̊Y̊ Z̊ scaled
by some factor K with respect to O. But X, Y , and Z are the centers of the
circles BPC, CPA, and APB, respectively, so the exact tricyclic coordinates
of P are (Kc1,Kc2,Kc3). �

2.3. Trilinear and Cartesian Coordinates

Proposition 2.6. Let P be a point not on the sidelines of ∆ABC. Let (`1, `2, `3)
and (c1, c2, c3) denote the exact trilinear and exact tricyclic coordinates, re-
spectively, of P . Then for each i,

2ci`i = −P, (2.5)

where P = |OP |2 −R2 is the power of P for the circumcircle, and

ci`i =
|∆ABC|

L1c
−1
1 + L2c

−1
2 + L3c

−1
3

. (2.6)

Proof. If P is on the circumcircle, then Eq. (2.5) is clearly true. Now assume
P is not on the circumcircle, and let ∆XY Z be the triangle formed by the

centers of the Bailey circles induced by P , as in Fig. 3. Observe that
−−→
PB ·−−→

OX = `1c1. Also, since
−−→
PB · (−−→XP +

−−→
PB/2) = 0, it follows that 2

−−→
PB · −−→PX =

|PB|2. Therefore

2c1`1 = 2
−−→
PB · (−−→OP +

−−→
PX)

= 2
−−→
PB · −−→OP + |PB|2

= |−−→OP +
−−→
PB|2 − |OP |2

= R2 − |OP |2.
The arguments for c2`2 and c3`3 are similar, so Eq. (2.5) holds.

Since

L1`1 + L2`2 + L3`3 = |∆ABC|,
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it follows that

−PL1c
−1
1 − PL2c

−1
2 − PL3c

−1
3 = 2|∆ABC|.

Solving for P yields Eq. (2.6). �

Applying Lemma 1.4, Eq. (2.5) can be rewritten as

2R` = −P sin(ψ)

sin(ψ − θ) .

This is proved in [3, Chapter II], which discusses the notion of “power,”
although the angular coordinates in [3] differ slightly from those defined here.

Corollary 2.7. Let P be a point not on the circumcircle or sidelines of ∆ABC.
Let (`1 : `2 : `3) and (c1 : c2 : c3) denote the homogeneous trilinear and
homogeneous tricyclic coordinates, respectively, of P . Then

(`1 : `2 : `3) = (c−1
1 : c−1

2 : c−1
3 ) (2.7)

Proof. This follows directly from Proposition 2.6. �

Corollary 2.8. Let P be a point not on the circumcircle or sidelines of ∆ABC.
Suppose that the Cartesian coordinates of P are given by dehomogenizing
(x : y : z) ∈ RP2 at z = 1, and that the Cartesian coordinates of A, B, and
C are given by (x1, y1), (x2, y2), and (x3, y3), respectively. Let (c1 : c2 : c3)
denote the homogeneous tricyclic coordinates of P . Thenxy

z

 =

x1 x2 x3

y1 y2 y3

1 1 1

L1 c
−1
1

L2 c
−1
2

L3 c
−1
3

 (2.8)

Proof. From Eq. (2.7), the barycentric coordinates of P are

(L1 c
−1
1 : L2 c

−1
2 : L3 c

−1
3 ).

The result follows. �

Remark 2.9. Both Corollary 2.7 and Corollary 2.8 can be extended to the
case that P is on a sideline of ∆ABC by considering each tricyclic coordinate
as belonging to RP1 and scaling the homogeneous quantities in the typical
way. This is discussed further in Section 4.

Proposition 2.10. Suppose a plane transformation is given in exact tricyclic
coordinates as

c 7→ c′ =
αc+ β

γc+ δ

for some αi, βi, γi, and δi. Then it can be written in homogeneous trilinear
coordinates as

` 7→ `′ =
γRΛ2 + δΛ1`

αRΛ2 + βΛ1`

where Λ1 = L1`1 + L2`2 + L3`3 and Λ2 = L1`2`3 + L2`1`3 + L3`1`2.
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Proof. Let K1 = L1c1 + L2c2 + L3c3 and K2 = L1c2c3 + L2c1c3 + L3c1c2.
The original map is in terms of exact tricyclic coordinates; to express

the map in terms of homogeneous tricyclic coordinates, each c value must be
scaled by RK1K

−1
2 , as in Eq. (2.4):

c′ =
αRK1c+ βK2

γRK1c+ δK2
.

Next we replace c = −P/(2`) and c′ = −P/(2`′), as in Eq. (2.7). This trans-
forms K1 into −PΛ2/(2`1`2`3) and K2 into P2Λ1/(4`1`2`3). Thus

−P
2`′

=
αR`−1Λ2 + βΛ1

γR`−1Λ2 + δΛ1
,

where we have cancelled a factor of P2/(4`1`2`3) from the numerator and
denominator. Finally, the factor of −P/2 on the left can be dropped since
these are homogeneous coordinates. Rearranging completes the proof. �

2.4. Construction from Angular Coordinates

Here we describe a construction very similar to the one used in [6] to define
Hofstadter points. It gives a direct geometric construction of a point from
its angular coordinates, and in fact yields a point for almost any triple of
directed angles.

Theorem 2.11. Let ψ1, ψ2, and ψ3 be any triple of directed angles such that
ψi 6= 0, θi. Let A′, B′, and C ′ be the points satisfying

]BAC ′ = ]B′AC = ψ1,

]CBA′ = ]C ′BA = ψ2,

]ACB′ = ]A′CB = ψ3,

as in Fig. 4. Then
←−→
AA′,

←−→
BB′, and

←−→
CC ′ are concurrent, meeting in a point

P , and

(i) P has homogeneous trilinear coordinates

` =
sin(ψ)

sin(ψ − θ) ,

(ii) P has homogeneous tricyclic coordinates

c = R
sin(ψ − θ)

sin(ψ)
,

(iii) If ψ1 + ψ2 + ψ3 = 0, then the tricyclic coordinates in (ii) are exact and
the angular coordinates of P are (ψ1, ψ2, ψ3).

Proof. To establish (i), we follow the same reasoning as in [6]. First, note
that a given line through A, B, or C includes all points with some fixed ratio
of trilinear coordinates [`2 : `3], [`1 : `3], or [`1 : `2], respectively. From Fig. 4,

points on
←−→
CA′ satisfy

[`1 : `2] = [ sin(ψ3) : sin(θ3 − ψ3) ]
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A

B

C

A′
B′

C ′

ψ1

ψ1

ψ2

ψ2

ψ3ψ3

Figure 4. P is the intersection of
←−→
AA′,

←−→
BB′, and

←−→
CC ′.

and points on
←−→
BA′ satisfy

[`1 : `3] = [ sin(ψ2) : sin(θ2 − ψ2) ].

It follows that A′, and consequently other points on
←−→
AA′, satisfies

[`2 : `3] = [ sin(ψ2) sin(θ3 − ψ3) : sin(θ2 − ψ2) sin(ψ3) ]. (2.9)

Analogous reasoning shows that
←−→
BB′ is given by

[`1 : `3] = [ sin(ψ1) sin(θ3 − ψ3) : sin(θ1 − ψ1) sin(ψ3) ] (2.10)

and
←−→
CC ′ is given by

[`1 : `2] = [ sin(ψ1) sin(θ2 − ψ2) : sin(θ1 − ψ1) sin(ψ2) ]. (2.11)

The point P with trilinear coordinates(
sin(ψ1)

sin(ψ1 − θ1)
:

sin(ψ2)

sin(ψ2 − θ2)
:

sin(ψ3)

sin(ψ3 − θ3)

)
satisfies each of Eq. (2.9), Eq. (2.10), and Eq. (2.11), so it must be the common

intersection of
←−→
AA′,

←−→
BB′, and

←−→
CC ′.

Part (ii) follows directly from (i) by Corollary 2.7.
Now suppose that ψ1 +ψ2 +ψ3 = 0. Consider the configuration of Bai-

ley circles given by (c1, c2, c3), with ci as in (ii). By Lemma 1.4, the same
configuration is given by (ψ1, ψ2, ψ3). By Proposition 2.2, these three circles
must have some common point of intersection Q which is not on the circum-
circle. Therefore Q has angular coordinates (ψ1, ψ2, ψ3) and exact tricyclic
coordinates (c1, c2, c3). By (ii) and the uniqueness of tricyclic coordinates for
points not on the circumcircle, Q = P . �

Remark 2.12. In the case that ψ2 = −ψ3, the lines which would intersect
to form A′ are parallel. In this case the expression Eq. (2.9) gives the line
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through A parallel to both of these, and the proof continues with this line in

place of
←−→
AA′. The same principle holds for B′ and C ′.

Remark 2.13. In the case that ψ = rθ and r 6= 0, 1, this construction yields
the Hofstadter r-point, as defined in [6]. This will be explored further in
Section 5.4.

If ψ1 = ψ2 = ψ3 = −π/3, then P is the first isogonic center. If ψ1 =
ψ2 = ψ3 = π/3, then P is the second isogonic center. By Theorem 2.11, it
follows that the angular coordinates of the first and second isogonic centers
are (−π/3,−π/3,−π/3) and (π/3, π/3, π/3), respectively.

If ψ = θ/2, then P is the incenter I. It does not follow that the angular
coordinates of I are ψ = θ/2, because in this case ψ1 + ψ2 + ψ3 6= 0. Indeed,
it is straightforward to deduce that the angular coordinates of I are in fact
ψ = (θ+π)/2 (and therefore repeating the construction using these angles still
produces the incenter I). However, the values of ψ used in the construction are
related to the ψ-coordinates of Bailey circles, as described in Corollary 2.14.

Corollary 2.14. Let X̊, Y̊ , and Z̊ denote the centers of the Bailey circles in the
configuration given by (ψ1, ψ2, ψ3). Let X, Y , and Z denote the centers of the
circles BPC, CPA, and APB, where P is constructed as in Theorem 2.11
with angles ψ1, ψ2, and ψ3. Then

(i) ∆XY Z and ∆X̊Y̊ Z̊ are homothetic with respect to O.

(ii) If ψ1 + ψ2 + ψ3 = 0, then ∆XY Z = ∆X̊Y̊ Z̊.

Proof. By Lemma 1.4, ∆X̊Y̊ Z̊ is formed by the centers of the Bailey circles
given by the homogeneous tricyclic coordinates of P . Therefore ∆XY Z, the
configuration given by the exact tricyclic coordinates of P , is obtained from
∆X̊Y̊ Z̊ by scaling by some factor K with respect to O. �

3. Transformations

Given a triangle ∆ABC, we will say that a birational automorphism of the
plane F preserves Bailey circles if, for any Bailey circle C for an edge of
∆ABC, there is a Bailey circle C′ for the same edge such that F restricts to
a map C 99K C′.

Each tricyclic coordinate of a point P specifies a Bailey circle through
P . Hence, a map F preserves Bailey circles if and only if it is “diagonal”
when written in tricyclic coordinates, in the sense that F can be expressed
as

(c1, c2, c3) 7→ (f1(c1), f2(c2), f3(c3)) (3.1)

for some functions fi. The same principle holds for angular coordinates.
We will show that antigonal conjugation, isogonal conjugation, and in-

version in the circumcircle can each be expressed in the form of Eq. (3.1).
The formulas in terms of angular coordinates are equivalent to the “charac-
teristic equations” appearing in [10]. In what follows, we fix a generic edge
E of ∆ABC and consider each coordinate independently of the others.
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3.1. Antigonal Conjugation

What we refer to here as antigonal conjugates are referred to as reflective
points in [2], reflective conjugates in [4], and antigonal pairs in [10].

Let P be a point in the plane other than A, B, and C, and consider
the three Bailey circles induced by P . Reflect each circle over its correspond-
ing edge. The reflected circles will intersect in a unique point P ′ called the
antigonal conjugate of P .

Proposition 3.1. Antigonal conjugation is given in angular and exact tricyclic
coordinates, respectively, by

(ψ1, ψ2, ψ3) 7→ (−ψ1,−ψ2,−ψ3)

and

(c1, c2, c3) 7→ (2M1 − c1, 2M2 − c2, 2M3 − c3)

Proof. Let C be a Bailey circle for E and let C′ be its image under antigonal
conjugation. Let c and c′ be the coordinates of C and C′, respectively. Since

the midpoint of E is exactly between the centers of C and C′,
c+ c′

2
= M .

Therefore c′ = 2M − c.
Let Q denote one of the two points where E⊥ and C intersect. Then if

Q′ is the reflection of Q over E, it must sit on C′. That is, ψ′ = ]AQ′B is
the same as ψ = ]AQB, but with opposite orientation. Hence ψ′ = −ψ. �

3.2. Isogonal Conjugation

Isogonal conjugation is defined as follows: Let P be a point in the plane.

Reflect the lines
←→
AP ,

←→
BP , and

←→
CP over the internal angle bisectors at A, B,

and C, respectively. The reflected lines will intersect in a point P ′, called the
isogonal conjugate of P .

Proposition 3.2. Isogonal conjugation is given in angular and exact tricyclic
coordinates, respectively, by

(ψ1, ψ2, ψ3) 7→ (−ψ1 + θ1,−ψ2 + θ2,−ψ3 + θ3)

and

(c1, c2, c3) 7→
(
R2 c−1

1 , R2 c−1
2 , R2 c−1

3

)
Proof. Isogonal conjugation acts on homogeneous trilinear coordinates as
`′ = `−1 ([1, 273]). By Eq. (2.7), it follows that isogonal conjugation acts
on homogeneous tricyclic coordinates as c′ = c−1. The action on exact tri-
cyclic coordinates can be deduced by observing that if (c1, c2, c3) is exact,
then Eq. (2.2) implies (R2 c−1

1 , R2 c−1
2 , R2 c−1

3 ) is exact.
By Lemma 1.3,

cot(ψ′) =
M − c′
L

=
M −R2 c−1

L
= cot(θ − ψ).

Hence ψ′ = −ψ + θ. �
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Remark 3.3. Note that Proposition 3.2 implies that isogonal conjugation
preserves Bailey circles. This can be seen directly as follows: Let P and P ′

be isogonal conjugates and let C and C′ denote the circles ABP and ABP ′.

Moving P along C will rotate
←→
AP and

←→
BP some common angle about A and

B, respectively. Hence the reflections
←−→
AP ′ and

←−→
BP ′ are rotated opposite that

angle, which has the effect of moving P ′ about the circle C′.

3.3. Inversion in the Circumcircle

Inversion maps a point P in the plane to P · R2/|P |2. It is well known that
this transformation preserves the set of circles and lines in the plane, and it
clearly fixes A, B, and C. Therefore it must also preserve Bailey circles.

Proposition 3.4. Inversion in the circumcircle is given in angular and exact
tricyclic coordinates, respectively, by

(ψ1, ψ2, ψ3) 7→ (−ψ1 + 2θ1,−ψ2 + 2θ2,−ψ3 + 2θ3)

and

(c1, c2, c3) 7→
(

R2 c1
2M1c1 −R2

,
R2 c2

2M2c2 −R2
,

R2 c3
2M3c3 −R2

)
Proof. A Bailey circle with radius r intersects E⊥ at two points; the coor-
dinates of these points along E⊥ are c ± r. If P is any point on E⊥ with
coordinate p, then its inverse P ′ has coordinate R2 p−1. Therefore c′ is ex-
actly halfway between R2(c± r)−1:

c′ =
1

2

(
R2

c− r +
R2

c+ r

)
=

R2 c

c2 − r2
.

As is evident from Fig. 2,

r2 = (c−M)2 + L2

= c2 − 2Mc+M2 + L2

= c2 − 2Mc+R2.

Therefore c′ =
R2 c

2Mc−R2
. Equivalently, R2 c−1 +R2 c′−1 = 2M .

Applying Lemma 1.3 to the equation R2 c−1 +R2 c′−1 = 2M yields

(M − L cot(θ − ψ)) + (M − L cot(θ − ψ′)) = 2M.

It follows that − cot(θ − ψ′) = cot(θ − ψ), so modulo π, −(θ − ψ′) = θ − ψ.
Therefore ψ′ = −ψ + 2θ. �

3.4. Bailey’s Theorem and Dihedral Groups

The following theorem is not new, appearing as [2, Theorem 5] and [4, The-
orem 13], and it is also proved in [10]. Here we give a proof using angular
coordinates.

Theorem 3.5. Isogonal conjugation maps inverse points to antigonal conju-
gates.
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Proof. Let a denote antigonal conjugation, s isogonal conjugation, and v
inversion. By Proposition 3.1, Proposition 3.2, and Proposition 3.4,

(s ◦ v)(ψ) = s(−ψ + 2θ) = −(−ψ + 2θ) + θ = ψ − θ
and

(a ◦ s)(ψ) = a(−ψ + θ) = −(−ψ + θ) = ψ − θ.
Therefore s◦v = a◦s, which is equivalent to the statement of the theorem. �

The next theorem characterizes the group generated by isogonal conju-
gation and inversion.

Theorem 3.6. Let s denote isogonal conjugation and v inversion. If the inte-
rior angles of ∆ABC are rational multiples of π, written in lowest terms as
θi = πki/ni, then

(i) The order of v ◦ s is n = lcm(n1, n2, n3),
(ii) v and s generate the dihedral group of order 2n.

If the interior angles of ∆ABC are not all rational multiples of π, then

(i) v ◦ s has infinite order,
(ii) v and s generate the infinite dihedral group.

Proof. By Proposition 3.2 and Proposition 3.4,

(v ◦ s)(ψ1, ψ2, ψ3) = (ψ1 + θ1, ψ2 + θ2, ψ3 + θ3),

so in the first case,

(v ◦ s)n(ψ1, ψ2, ψ3) = (ψ1 + π
nk1

n1
, ψ2 + π

nk2

n2
, ψ3 + π

nk3

n3
).

The smallest n such that each πnki/ni is a multiple of π is lcm(n1, n2, n3).
The second case is clear, since if nθi is a multiple of π for some n, then θi is
a rational multiple of π. �

Remark 3.7. Inversion may be replaced with antigonal conjugation in the
statement of Theorem 3.6 with no significant change in the proof.

4. Resolution of Singularities

The set of angular or exact tricyclic coordinate triples and the set of points
in the plane are not in one-to-one correspondence, as outlined in Remark 1.6.

First, points on the circumcircle other than A, B, and C all have the
same representation, since the only Bailey circle through such points is the
circumcircle. That is, c1 = c2 = c3 = 0. This suggests that the circumcircle
should be collapsed to a point.

Second, the vertices of ∆ABC have ambiguous representation: If P = A,
for example, then the Bailey circle for BC must be the circumcircle. But, as
suggested by Proposition 2.2, any other two Bailey circles which are tangent
at A will yield a configuration given by a triple (c1, c2, c3) satisfying Eq. (2.2).
The fact that there is one triple of exact coordinates for each line of tangency
through A suggests that the plane should be blown up at A: This replaces A
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with its exceptional divisor EA ' RP1, representing each direction through
A.

With these issues in mind, we carry out the following steps: First extend
the plane to include the line at infinity and blow up each vertex of ∆ABC.
Then collapse the circumcircle to a point P0 and the line at infinity to a
point P∞. We will see that the result is a torus, that points in this torus
are in one-to-one correspondence with angular and exact tricyclic coordinate
triples, and that any birational automorphism of the plane that preserves
Bailey circles is a regular automorphism of this torus, with no singularities.

4.1. Construction

We will consider homogeneous tricyclic coordinates as elements of RP1, writ-
ten as [ci : di]. Denote [1 : 0] by ∞ and [0 : 1] by 0. Let T 3

c be the 3-torus of
all possible coordinate triples.

The surface of exact tricyclic coordinates given by Eq. (2.2) is defined
on that subset R3 ⊂ T 3

c where d1 = d2 = d3 = 1. Its closure Σ ⊂ T 3
c is given

by the equation

R(L1 c1d2d3 + L2 d1c2d3 + L3 d1d2c3) = L1 d1c2c3 + L2 c1d2c3 + L3 c1c2d3.

The surface Σ is in fact a 2-torus. This can be seen as follows: First, the set
of all triples (ψ1, ψ2, ψ3) is a 3-torus T 3

ψ. The surface of angular coordinates

Σψ ⊂ T 3
ψ is given by ψ1 + ψ2 + ψ3 = 0, which is a 2-torus. Extending

Lemma 1.4 as

[c : d] = [R sin(ψ − θ) : sin(ψ)]

defines an isomorphism T 3
c
∼−→ T 3

ψ which restricts to Σ
∼−→ Σψ.

The conversion to Cartesian coordinates, Eq. (2.8), extends to a rational
map T 3

c 99K RP
2 given byxy

z

 =

x1 x2 x3

y1 y2 y3

1 1 1

L1 d1 c2 c3
L2 c1 d2 c3
L3 c1 c2 d3

 . (4.1)

This map is undefined only when d1c2c3 = c1d2c3 = c1c2d3 = 0. This occurs
only at (∞,∞,∞) and the lines (−, 0, 0), (0,−, 0), and (0, 0,−).

Let Φ denote Eq. (4.1) restricted to Σ. Then Φ is undefined only at
(∞,∞,∞) and (0, 0, 0). Note that Φ does not extend to (∞,∞,∞) because,
away from this point, d1 = 0, d2 = 0, and d3 = 0 map to the sidelines BC,
AC, and AB, respectively, which have no point in common. Similarly, Φ does
not extend to (0, 0, 0) because, away from this point, c1 = 0, c2 = 0, and
c3 = 0 collapse to A, B, and C, respectively.

Let Σ̊ ⊂ Σ be given by removing (∞,∞,∞) and the curves c1 = 0,

c2 = 0, and c3 = 0. Let R̊P2 ⊂ RP2 be given by removing the line at infinity
and the circumcircle. The geometric definition of exact tricyclic coordinates

shows that Φ restricts to an isomorphism Σ̊→ R̊P2.
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Lemma 4.1. Let R̃P2 denote the blowup of RP2 at the vertices A, B, and C.

Then Φ lifts to a rational map Φ̃ as in the following diagram:

R̃P2

��
Σ

Φ
//

Φ̃

>>

RP2

The map Φ̃ is undefined only at (∞,∞,∞) and (0, 0, 0). Let Z̊1 denote

the curve c1 = 0 minus the point (0, 0, 0), and define Z̊2 and Z̊3 analogously.

Let E̊A denote the exceptional divisor of A minus the direction tangent to the
circumcircle, and define E̊B and E̊C analogously. Then whereas Φ collapses

each Z̊i to a point, Φ̃ restricts to isomorphisms

Z̊1
∼−→ E̊A, Z̊2

∼−→ E̊B , Z̊3
∼−→ E̊C .

Proof. There is clearly a rational map Φ̃ : Σ 99K R̃P2 that is identical to
Φ, excluding from the domain those points mapping to A, B, or C. From
Eq. (4.1), it can be deduced that Φ−1(A) = Z̊1, and similarly for B and C.

What must be shown, then, is that Φ̃ extends to Z̊1, mapping it isomorphi-
cally onto E̊A, and similarly for Z̊2 and Z̊3. We will demonstrate the first
assertion, the others being analogous.

To understand how Φ̃ behaves near c1 = 0, consider the original plane

as the open subset of R̃P2 with z = 1, and blow up the plane at A = (x1, y1).
Points in this blowup can be understood as consisting of a point P = (x, y)
along with a direction through A, with the restriction that if P 6= A, the

direction must coincide with
←→
AP . By Eq. (4.1), the direction of

←→
AP is given

by

[x− x1 : y − y1]T =

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)(
L2 d2c3
L3 c2d3

)
. (4.2)

This clearly extends to Z̊1, and we may consider Eq. (4.2) as a rational

map Z̊1 99K E̊A. Now consider the parameterization of c1 = 0 in Σ by the
parameter [u : v] ∈ RP1:

[c1 : d1] = [0 : 1]

[c2 : d2] = [L2
3 u+ L2

2 v : R−1L1L3 u]

[c3 : d3] = [L2
3 u+ L2

2 v : R−1L1L2 v]

Away from [u : v] = [L2
2 : −L2

3], which corresponds to (0, 0, 0), it is easily
verified that

[L2 d2c3 : L3 c2d3] = [u : v].

It follows that Φ̃ maps the point [u : v] on c1 = 0 to the direction u
−−→
AB +

v
−→
AC through A. The missing direction L2

2

−−→
AB − L2

3

−→
AC is tangent to the

circumcircle, as shown below. So Eq. (4.2) is in fact an isomorphism Z̊1
∼−→

E̊A.
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Let P be a point in the plane and suppose that
←→
AP is tangent to the

circumcircle. Write −→
AP = u

−−→
AB + v

−→
AC.

Then

0 =
−→
OA · −→AP = u

−→
OA · −−→AB + v

−→
OA · −→AC,

so

[u : v] = [−−→OA · −→AC :
−→
OA · −−→AB].

Now observe that

4L2
2 = |−→AC|2 = (

−−→
OC −−→OA) · (−−→OC −−→OA)

= 2R2 − 2
−→
OA · −−→OC

= 2
−→
OA · (−→OA−−−→OC) = −2

−→
OA · −→AC.

Similarly, 4L2
3 = |−−→AB|2 = −2

−→
OA · −−→AB. Therefore [u : v] = [L2

2 : −L2
3]. �

Lemma 4.2. Let Σ̃ denote the blowup of Σ at (∞,∞,∞) and (0, 0, 0). Then

Φ̃ extends to an isomorphism Ψ̃ as in the following diagram:

Σ̃

��

Ψ̃ // R̃P2

Σ
Φ̃

>>

The exceptional divisors of (∞,∞,∞) and (0, 0, 0) map isomorphically via Ψ̃

onto the line at infinity and the proper transform of the circumcircle in R̃P2,
respectively.

Proof. Let E∞ and E0 denote the exceptional divisors of (∞,∞,∞) and

(0, 0, 0), respectively, in Σ̃. Observe that there is a rational map Ψ̃ : Σ̃ 99K R̃P2

which is undefined on E∞ and E0 but is otherwise identical to Φ̃. What must
be shown, then, is that this map Ψ̃ extends to E∞ and E0 as in the statement
of the lemma.

First we determine how Ψ̃ behaves near E∞. Consider the open subset
V ⊂ T 3

c obtained by dehomogenizing at ci = 1 for each i. Then V ' R3
(d1,d2,d3)

and the point (∞,∞,∞) ∈ T 3
c is given by 0̂ ∈ V . Let Ṽ denote the blowup

of V at 0̂. That is, Ṽ is the set of(
(d1, d2, d3), [β1 : β2 : β3]

)
∈ V × RP2

satisfying [β1 : β2 : β3] = [d1 : d2 : d3] when d̂ 6= 0̂. The map Ṽ 99K RP2 given
by xy

z

 =

x1 x2 x3

y1 y2 y3

1 1 1

L1 β1

L2 β2

L3 β3

 (4.3)
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agrees with Eq. (4.1) away from d̂ = 0̂. Now consider the intersection of Σ
with V , defined by the equation

L1d1 + L2d2 + L3d3 −R(L1d2d3 + L2d1d3 + L3d1d2) = 0.

The tangent plane to Σ at 0̂ ∈ V is given by L1d1 +L2d2 +L3d3 = 0, so E∞
sits inside of {0̂} × RP2 ⊂ Ṽ as L1β1 + L2β2 + L3β3 = 0. Clearly Eq. (4.3)
extends to E∞, and in fact maps it isomorphically onto z = 0, the line at

infinity. Moreover, this determines the extension of Ψ̃ to E∞, since the image
of E∞ under Eq. (4.3) does not include A, B, or C.

We now determine the behavior of Ψ̃ near E0. Consider the open subset
U ⊂ T 3

c obtained by dehomogenizing at di = 1 for each i. Then U ' R3
(c1,c2,c3)

and the point (0, 0, 0) ∈ T 3
c is given by 0̂ ∈ U . Let Ũ denote the blowup of U

at 0̂, which is the set of(
(c1, c2, c3), [α1 : α2 : α3]

)
∈ U × RP2

satisfying [α1 : α2 : α3] = [c1 : c2 : c3] when ĉ 6= 0̂. The map Ũ 99K RP2 given
by xy

z

 =

x1 x2 x3

y1 y2 y3

1 1 1

L1 α2α3

L2 α1α3

L3 α1α2

 (4.4)

agrees with Eq. (4.1) away from ĉ = 0̂. The intersection of Σ with U is defined
by the equation

L1c1 + L2c2 + L3c3 −R−1(L1c2c3 + L2c1c3 + L3c1c2) = 0.

The tangent plane to Σ at 0̂ ∈ U is given by L1c1 + L2c2 + L3c3 = 0, so

E0 sits inside of {0̂} × RP2 ⊂ Ũ as L1α1 + L2α2 + L3α3 = 0. Observe that
Eq. (4.4) extends to E0.

The image of E0 under Eq. (4.4) includes A, B, and C, so to determine

Ψ̃, we must also determine a direction through A, B, and C. Again assuming
ĉ 6= 0̂, Eq. (4.2) shows that the direction through A is given by

L2α3
−−→
AB + L3α2

−→
AC. (4.5)

This extends to E0 as well, and directions through the other vertices can be

determined similarly. We have therefore determined how Ψ̃ extends to E0,
but it remains to be shown that it maps E0 isomorphically onto the proper
transform of the circumcircle.

By Eq. (2.6) and Eq. (2.5), assuming exact tricyclic coordinates,

R2 − |OP |2 =
2 |∆ABC| c1c2c3

L1c2c3 + L2c1c3 + L3c1c2
.

For homogeneous tricyclic coordinates, each ci must be scaled according to
Eq. (2.4). This yields

R2 − |OP |2 =
2R |∆ABC| c1c2c3(L1c1 + L2c2 + L3c3)

(L1c2c3 + L2c1c3 + L3c1c2)2
.
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It follows that away from 0̂ in U , the surface L1c1 + L2c2 + L3c3 = 0 maps

via Eq. (4.1) to the circumcircle. By continuity, Ψ̃ must therefore map E0 to
the proper transform of the circumcircle. It remains to be seen that it is an
isomorphism.

Observe that [0 : −L3 : L2] is the only point of E0 with α1 = 0, and
therefore the only point of E0 mapped by Eq. (4.4) to A. By Eq. (4.5), it is

sent to the direction L2
2

−−→
AB − L2

3

−→
AC in the exceptional divisor of A which,

as discussed in Lemma 4.1, is the direction tangent to the circumcircle. The
same principle holds for the two points of E0 with α2 = 0 and α3 = 0,
respectively.

Finally, let E̊0 denote E0 minus the three points with α1 = 0, α2 = 0,

and α3 = 0, and let C̊ denote the proper transform of the circumcircle minus
the three points over the vertices A, B, and C. All that remains to be shown

is that the map E̊0 → C̊ induced by Eq. (4.4) is an isomorphism. This is true,
since Eq. (4.4) is invertible away from α1α2α3 = 0. �

Theorem 4.3. Suppose the line at infinity and the proper transform of the

circumcircle in R̃P2 are collapsed to points P∞ and P0, respectively, yielding

a surface T . Then the isomorphism Ψ̃ descends to an isomorphism Ψ as in
the following diagram:

Σ̃

��

Ψ̃ // R̃P2

��
Σ

Ψ // T

The points (∞,∞,∞) and (0, 0, 0) map via Ψ to P∞ and P0, respectively.

Proof. This follows immediately from Lemma 4.2. �

Remark 4.4. A slight modification of Theorem 4.3 illustrates Dyck’s theorem:

If E∞ is collapsed to a point in Σ̃, the result is the same as Σ blown up at
one point; topologically, this is T 2#RP2. If the line at infinity is collapsed

to a point in R̃P2, the result is the same as a sphere blown up at three

points; topologically this is RP2#RP2#RP2. The isomorphism Ψ̃ descends to
an isomorphism between these surfaces.

4.2. Features on the Torus

The construction of the surface T is described topologically in Fig. 5 and
Fig. 6. The curves di = 0 in Σ map onto the sidelines of ∆ABC. These are
represented by dashed lines in Fig. 5 and Fig. 6. The curves ci = 0 in Σ map
onto the exceptional divisors of A, B, and C. These are represented by solid
lines in Fig. 5 and Fig. 6.

Remark 4.5. Points in the surface Σ are in one-to-one correspondence with
configurations of Bailey circles (ψ1, ψ2, ψ3) satisfying ψ1 +ψ2 +ψ3 = 0. Recall
that Proposition 2.2 classified such configurations: Case (i), in which all three
Bailey circles are sidelines, corresponds to P∞. Case (ii), in which one Bailey
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∞

A B

C

Figure 5. Blowing up at A, B, and C.

A B

CP0

A B

C

P∞
A A

B

B

C

P∞

P0

Figure 6. Inside and outside the circumcircle; the torus T .

circle is the circumcircle and the other two are tangent, corresponds to the
solid lines in Fig. 5 and Fig. 6; the special case that all three Bailey circles
are the circumcircle corresponds to the intersection P0.

In Proposition 4.6 we summarize the coordinates for several points on T .
The angular coordinates in this list agree with those found in [9]. Hofstadter
points and related centers are investigated in Section 5.4. Other points, in-
cluding Brocard points, isodynamic points, and isogonic centers, fit naturally
into the perspective of Bailey circles and angular coordinates, but we omit
these from the list.

Proposition 4.6. Let H, O, and I denote the orthocenter, circumcenter, and
incenter, respectively. The following table shows angular and exact tricyclic
coordinates.

c ψ
P∞ ∞ 0
P0 0 θ
H 2M −θ
O R2/(2M) 2θ
I R (θ + π)/2

Proof. The coordinates for P∞ and P0 follow directly from Theorem 4.3. The
angular coordinates for H, O, and I can be determined as follows:
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In Theorem 2.11 with ψ = −θ, the triangle ∆A′BC is exactly ∆ABC

reflected over the sideline
←→
BC. So

←−→
AA′ must be perpendicular to

←→
BC. Simi-

larly
←−→
BB′ and

←−→
CC ′ are perpendicular to

←→
CA and

←→
AB, respectively, so P = H.

The angular coordinate ψ1 for O is ]BOC; by the inscribed angle the-
orem this is equal to 2]BAC = 2θ1. The angular coordinate ψ1 for I is
]BIC = π − θ2/2− θ3/2. This is equal (modulo π, as usual) to (θ1 + π)/2.
The coordinates ψ2 and ψ3 can be deduced similarly.

The exact tricyclic coordinates can be determined using Lemma 1.4. �

Birational automorphisms of the plane which preserve Bailey circles can
be viewed as automorphisms of the torus T . One the one hand, when viewed
as acting on the plane,

(i) Antigonal conjugation is not defined at the orthocenter H,
(ii) Isogonal conjugation is not defined on the circumcircle,
(iii) Inversion in the circumcircle is not defined at the circumcenter O.

One the other hand, when viewed as automorphisms of T , Proposition 3.1,
Proposition 3.2, Proposition 3.4, and Proposition 4.6 show that

(i) Antigonal conjugation exchanges H ↔ P0 and fixes P∞,
(ii) Isogonal conjugation exchanges P0 ↔ P∞ and fixes I,
(iii) Inversion in the circumcircle exchanges O ↔ P∞ and fixes P0.

5. Translations, Reflections, and Triangle Centers

5.1. Classification

Consider a point P with angular coordinates (α1, α2, α3). Then the map

ψ 7→ −(ψ − α) + α (5.1)

fixes P . We will refer to this map as angular reflection about P . By Proposi-
tion 3.1, Proposition 3.2, and Proposition 3.4, we see that the following maps
are angular reflections:

(i) Antigonal conjugation: Reflection about P∞ (α = 0)
(ii) Isogonal conjugation: Reflection about the incenter (α = (θ + π)/2)
(iii) Inversion in the circumcircle: Reflection about P0 (α = θ)

Let ω1, ω2, and ω3 be any triple satisfying ω1 + ω2 + ω3 = 0. The map

ψ 7→ ψ + ω (5.2)

will be referred to as an angular translation. The maps given by isogonal con-
jugation followed by inversion or isogonal conjugation followed by antigonal
conjugation, as in Theorem 3.5 and Theorem 3.6, are angular translations.

Angular translations and angular reflections are given in terms of exact
tricyclic coordinates in Proposition 5.1.
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Proposition 5.1. The angular translation Eq. (5.2) acts on the exact tricyclic
coordinate c by the Möbius transformation(

R sin(θ − ω) R2 sin(ω)
− sin(ω) R sin(θ + ω)

)
(5.3)

and the angular reflection Eq. (5.1) acts on the exact tricyclic coordinate c
by the Möbius transformation(

R sin(2α− θ) −R2 sin(2α− 2θ)
sin(2α) −R sin(2α− θ)

)
. (5.4)

Proof. Let z = e2iψ and Θ = eiθ. By Eq. (2.3), z is equal to the Möbius

transformation

(
−1 RΘ
−1 RΘ

)
applied to c. Hence c is equal to the Möbius

transformation

(
RΘ −RΘ
1 −1

)
applied to z.

Now let Ω = eiω. The action of Eq. (5.2) on z is given by

z 7→ e2i(ψ+ω) = zΩ2 = zΩ/Ω,

which is the Möbius transformation

(
Ω 0
0 Ω

)
. The action on c is therefore

1

2i

(
RΘ −RΘ
1 −1

)(
Ω 0
0 Ω

)(
−1 RΘ
−1 RΘ

)
=

1

2i

(
R(ΘΩ−ΘΩ) R2(Ω− Ω)

Ω− Ω R(ΘΩ−ΘΩ)

)
.

The entries of the matrix are the imaginary parts of R2Ω, Ω, RΘΩ, and RΘΩ.
Finally, let A = e2iα. The action of Eq. (5.1) on z is given by

z 7→ e2i(−ψ+2α) = zA2 = A/(zA),

which is the Möbius transformation

(
0 A
A 0

)
. Following the same reasoning

as above, the action on c is given by

1

2i

(
R(AΘ−AΘ) −R2(AΘ

2 −AΘ2)
A−A −R(AΘ−AΘ)

)
.

The entries of the matrix are the imaginary parts of A, ±RAΘ, and −R2AΘ
2
.
�

Every angular reflection and angular translation is an automorphism
of the torus of angular (or exact tricyclic) coordinates, and can be viewed
as a birational automorphism of the plane which preserves Bailey circles.
In Theorem 5.2 we show that, in fact, every birational automorphism of
the plane which preserves Bailey circles must be an angular reflection or an
angular translation.

Theorem 5.2. Any birational automorphism of the plane which preserves Bai-
ley circles must be an angular reflection or an angular translation.
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Proof. Let F be any birational automorphism of the plane which preserves
Bailey circles. Recall that such map may be written in the form Eq. (3.1).
Moreover, by Eq. (2.8), each fi must be a birational map of one variable,
hence a Möbius transformation.

Let z = e2iψ and Θ = eiθ. By the same reasoning used in Proposition 5.1,
fi must be given by the Möbius transformation in z with matrix(

α β
γ δ

)
=

1

R2

(
−1 RΘ
−1 RΘ

)(
AR BR2

C DR

)(
RΘ −RΘ
1 −1

)
(5.5)

=

(
−(AΘ +B) + Θ(CΘ +D) (AΘ +B)−Θ(CΘ +D)
−(AΘ +B) + Θ(CΘ +D) (AΘ +B)−Θ(CΘ +D)

)
,

where the middle matrix of Eq. (5.5) defines fi as a Möbius transformation
in ci. Observe that β = −α + ζ, γ = α − ζ, and δ = −α, where ζ =
(Θ−Θ)(CΘ +D). Moreover, ζ 6= 0 since θ is not a multiple of π.

The transformation F must map exact triples to exact triples. Exactness
is equivalent to z1z2z3 = e2i(ψ1+ψ2+ψ3) = 1. Similarly, z′1z

′
2z
′
3 = 1, so

1 = z′1z
′
2z
′
3 =

(α1z1 + β1)(α2z2 + β2)(α3z3 + β3)

(γ1z1 + δ1)(γ2z2 + δ2)(γ3z3 + δ3)
.

Therefore

(α1z1 + β1)(α2z2 + β2)(α3z3 + β3)− (γ1z1 + δ1)(γ2z2 + δ2)(γ3z3 + δ3) = 0.

Expanding, replacing z3 = 1/(z1z2), and multiplying through by z1z2 yields:[
(α1α2α3 − γ1γ2γ3) + (β1β2β3 − δ1δ2δ3)

]
z1z2 +

[α1α2β3 − γ1γ2δ3] z2
1z

2
2 + [α1β2α3 − γ1δ2γ3] z1 +

[α1β2β3 − γ1δ2δ3] z2
1z2 + [β1α2α3 − δ1γ2γ3] z2 +

[β1α2β3 − δ1γ2δ3] z1z
2
2 + [β1β2α3 − δ1δ2γ3] = 0.

That is, the polynomial on the left-hand side must vanish whenever |z1| =
|z2| = 1. But this implies that the polynomial is identically zero, so each
quantity in square brackets must be zero. In particular,

(α1 − ζ1)α2α3 = α1(α2 − ζ2)(α3 − ζ3)

α1(α2 − ζ2)α3 = (α1 − ζ1)α2(α3 − ζ3)

α1α2(α3 − ζ3) = (α1 − ζ1)(α2 − ζ2)α3

Observe that if αi = 0 for any i, then αi = 0 for all i. Similarly, if αi = ζi
for any i, then αi = ζi for all i. In the first case, the matrix Eq. (5.5) is(

0 ζ
−ζ 0

)
. In the second case, the matrix Eq. (5.5) is

(
ζ 0

0 −ζ

)
. These are

angular reflection and angular translation, respectively.
Finally, suppose αi 6= 0, ζi for any i. Let ξ = (α − ζ)/α. Then the

equations above can be rewritten as:

ξ1 = ξ2ξ3, ξ2 = ξ1ξ3, ξ3 = ξ1ξ2.
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Therefore ξ3 = ξ1ξ2 = ξ1ξ1ξ3. Since ξ3 6= 0, it follows that |ξ1| = 1. Repeating
this argument yields

|ξ1| = |ξ2| = |ξ3| = 1.

Hence |α| = |α − ζ|, so there exists ρ such that |ρ| = 1 and α − ζ = ρα.

The matrix Eq. (5.5) is therefore

(
α −αρ
αρ −α

)
. But this is the constant map

z 7→ ρ, which is impossible. �

5.2. Angular Reflections

Inversion in the circumcircle exchanges the regions inside and outside the
circumcircle. In [2, Theorem 6], it is proved that antigonal conjugation also
exchanges two regions, with the sidelines acting as boundaries between these.
These are special cases of a more general phenomenon: Inversion and antigo-
nal conjugation are both angular reflections; we will show that every angular
reflection exchanges two regions of the plane.

The torus of angular coordinates is shown in Fig. 7. The vertical lines
have fixed ψ1 value, the horizontal lines have fixed ψ2 value, and the diagonal
lines have fixed ψ3 value (since ψ1+ψ2+ψ3 = 0). In terms of the isomorphism
given in Theorem 4.3, the features of the diagram map to the modified plane
in the following way: The dashed lines through P∞ correspond to the sidelines
of ∆ABC; the dotted lines through P0 correspond to the exceptional divisors
of A, B, and C (hence these lines collapse to the vertices in the original plane);
and the solid lines correspond to the Bailey circles through P .

ψ1

ψ2

P∞

(0, 0) (π, 0)

(0, π)

P0

P

Figure 7. Two regions on the torus of angular coordinates.

When viewed as acting on the ψ1ψ2-plane, angular reflection about P
simply reflects each point through P or, equivalently, rotates about P through
an angle of π. This exchanges the shaded and unshaded regions shown in
Fig. 7. These two regions correspond to regions in the plane; when viewed as
acting on the plane, angular reflection about P exchanges these.

Let RT denote the shaded region of the torus shown in Fig. 7, and let
R denote the corresponding region in the plane. To understand what R looks
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like, observe that containment in RT flips exactly when a solid line is crossed.
Hence, containment in R flips exactly when a Bailey circle for P is crossed.

The dotted lines correspond to the exceptional divisors of the vertices,
so each point on a dotted line can be interpreted as an infinitesimal line
segment through a vertex in the plane. The points of intersection with solid
lines correspond to those infinitesimal line segments tangent to a Bailey circle
for P . Following along a dotted line in the torus, containment in RT flips
exactly when a solid line is crossed. Hence, as an infinitesimal line segment
through a vertex is rotated, containment in R flips exactly when it passes
through a direction tangent to a Bailey circle for P .

A

B
C

P

Figure 8. Angular reflection about P exchanges the shaded
and unshaded regions.

This observation is summarized in Theorem 5.3, leaving reflection about
P0 and about P∞ as special cases. These cases correspond to inversion in the
circumcircle and antigonal conjugation, respectively. The fact that R is the
region inside the circumcircle in the case P = P0 is illustrated by Fig. 5 and
Fig. 6. A general example is shown in Fig. 8.

Theorem 5.3. Let P be a point not on the circumcircle.
Let B denote the union of the three Bailey circles for P . Each Bailey

circle divides the plane into two open regions; let D1, D2, and D3 denote one
of those regions for each Bailey circle. Finally, let R (respectively, R′) denote
the regions consisting of those points not in B which are contained in an even
(respectively, odd) number of Di.

Then angular reflection about P maps R to R′ and vice-versa.

5.3. Preservation of Triangle Centers

Denote the side lengths of ∆ABC by a = |BC|, b = |AC|, and c = |AB|.
The following definitions can be found in [7] and [5]. A triangle center is a
point P with homogeneous trilinear coordinates(

f(a, b, c) : f(b, c, a) : f(c, a, b)
)
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where f is a homogeneous function which is symmetric in the last two vari-
ables. The function f is called the center-function. Note that different center-
functions may produce the same triangle center for every triangle since a
center-function produces homogeneous coordinates.

A polynomial center can be described by a center-function f which is a
rational function in the side lengths alone. A regular center has the weaker
property that f may be taken to be a rational function in the side lengths
and |∆ABC|. Since 4R|∆ABC| = abc, this is equivalent to f being a rational
function in the side lengths and circumradius R.

The following describes a sufficient condition for a plane transformation
which depeneds on a triangle ∆ABC (such as an angular reflection or angular
translation) to map any polynomial triangle center to another polynomial
triangle center.

Lemma 5.4. Let F be a rational function in the variables a, b, c, `1, `2,
and `3. For each triangle ∆ABC with side lengths a, b, and c, there is an
associated plane transformation (`1 : `2 : `3) 7→ (`′1 : `′2 : `′3), where

`′1 = F (a, b, c, `1, `2, `3),

`′2 = F (b, c, a, `2, `3, `1),

`′3 = F (c, a, b, `3, `1, `2).

(5.6)

Suppose F satisfies the following properties:

(i) F (λa, λb, λc, `1, `2, `3) = λmF (a, b, c, `1, `2, `3) for some m ∈ Z,
(ii) F (a, b, c, λ`1, λ`2, λ`3) = λnF (a, b, c, `1, `2, `3) for some n ∈ Z,
(iii) F (a, c, b, `1, `3, `2) = F (a, b, c, `1, `2, `3).

Then if P is a polynomial triangle center for ∆ABC, the plane transforma-
tion Eq. (5.6) maps P to another polynomial triangle center for ∆ABC.

Proof. If P is a polynomial triangle center with center-function f(a, b, c),
then it has trilinear coordinates

(`1 : `2 : `3) =
(
f(a, b, c) : f(b, c, a) : f(c, a, b)

)
.

Substituting these values into the expressions for `′i in Eq. (5.6) yields

(`′1 : `′2 : `′3) =
(
g(a, b, c) : g(b, c, a) : g(c, a, b)

)
,

where

g(a, b, c) = F (a, b, c, f(a, b, c), f(b, c, a), f(c, a, b)).

Clearly g is a rational function in a, b, and c only, so all that remains to
be shown is that g is homogeneous and is symmetric in the last two variables.
This follows from the corresponding properties of f along with conditions (i),
(ii), and (iii) satisfied by F . �

Next we will use Lemma 5.4 to show that certain angular translations
and angular reflections preserve polynomial triangle centers, but before pro-
ceeding we must determine how angular translations and angular reflections
act on trilinear coordinates.
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Lemma 5.5. The angular translation Eq. (5.2) can be written in homogeneous
trilinear coordinates as

` 7→ `′ =
− sin(ω)Λ2 + sin(θ + ω)Λ1`

sin(θ − ω)Λ2 + sin(ω)Λ1`
(5.7)

and the angular reflection Eq. (5.1) can be written in homogeneous trilinear
coordinates as

` 7→ `′ =
sin(2α)Λ2 − sin(2α− θ)Λ1`

sin(2α− θ)Λ2 − sin(2α− 2θ)Λ1`
, (5.8)

where Λ1 = L1`1 + L2`2 + L3`3 and Λ2 = L1`2`3 + L2`1`3 + L3`1`2.

Proof. This follows directly from Proposition 5.1 and Proposition 2.10. Note
that one factor of R has been dropped from each expression defining `′, which
is permissible since the coordinates are homogeneous. �

The fact that the circumradius R does not appear in Eq. (5.7) or
Eq. (5.8) will be important when considering whether these maps send poly-
nomial centers to polynomial, as opposed to regular, centers.

Lemma 5.6. Let h denote the angular translation Eq. (5.2) with ω = (θ+π)/2.
Then h and h−1 preserve polynomial triangle centers.

Proof. The angular translation h can be written in homogeneous trilinear
coordinates as in Eq. (5.7). Observe that

sin(θ ± ω)

sin(ω)
= sin(θ) cot(ω)± cos(θ)

= − sin(θ) tan(θ/2)± cos(θ)

= −(1− cos(θ))± cos(θ),

so Eq. (5.7) may be written as

` 7→ `′ =
−Λ2 + (2 cos(θ)− 1)Λ1`

−Λ2 + Λ1`
.

By the law of cosines,

cos(θ1) =
L2

2 + L2
3 − L2

1

2L2L3
,

and similarly for cos(θ2) and cos(θ3). Therefore `′i is a rational function of L1,
L2, L3, `1, `2, and `3. Let Fi(a, b, c, `1, `2, `3) denote this rational function
(recalling that a = 2L1, b = 2L2, c = 2L3).

The function F1 satisfies properties (i) and (ii) of Lemma 5.4 (with m =
n = 0). The expressions Λ1 and Λ2 remain unchanged when exchanging both
pairs `i ↔ `j and Li ↔ Lj , so F1 satisfies property (iii) as well. Moreover,

F2(a, b, c, `1, `2, `3) = F1(b, c, a, `2, `3, `1)

and

F3(a, b, c, `1, `2, `3) = F1(c, a, b, `3, `1, `2).
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This can be seen by taking into account the symmetries of Λ1 and Λ2 just
observed. Hence h satisfies all of the requirements of Lemma 5.4. The same
arguments apply when replacing ωi with −ωi, so h−1 also satisfies all of the
requirements of Lemma 5.4. �

Lemma 5.7. Let n ∈ Z. Suppose P has angular coordinates (α1, α2, α3), where
α = n(θ+π)/2. Then angular reflection about P preserves polynomial triangle
centers.

Proof. Let σ denote the angular reflection Eq. (5.1). In angular coordinates,
σ is given by

ψ 7→ ψ′ = −ψ + n(θ + π)/2

= −ψ + θ + (n− 2)(θ + π)/2.

By Proposition 3.2, it follows that σ = hn−2 ◦ s, where s is isogonal conjuga-
tion. By Lemma 5.6, hn−2 preserves polynomial triangle centers, so all that
remains to be shown is that isogonal conjugation also preserves polynomial
triangle centers.

In terms of homogeneous trilinear coordinates, isogonal conjugation
is given by ` 7→ `−1 ([1, 273]). This trivially satisfies the conditions of
Lemma 5.4. �

Remark 5.8. The angular reflections satisfying the condition in Lemma 5.7
include antigonal conjugation (n = 0), isogonal conjugation (n = 1), and
inversion in the circumcircle (n = 2).

Theorem 5.9. Let h be defined as in Lemma 5.6 and σ any angular reflec-
tion satisfying the condition of Lemma 5.7. The group generated by h and σ
does not depend on σ, and every plane transformation in the group preserves
polynomial triangle centers.

Proof. This follows immediately from Lemma 5.6 and Lemma 5.7. �

Remark 5.10. The map h2 is given by ψ 7→ ψ + θ, which by Proposition 3.2
and Proposition 3.4 implies h2 = v ◦ s. The dihedral group of Theorem 3.6,
then, is a subgroup of the group in Theorem 5.9. In particular, it too consists
of plane transformations which preserve polynomial triangle centers.

5.4. Hofstadter Points

Recall that in the construction described by Theorem 2.11, letting ψ = rθ
for r 6= 0, 1 recovers the construction of the Hofstadter r-point Hr in [6]. Let
H⊥r+1/2 be defined analogously, but with ψ = π/2 + (r+ 1

2 )θ. That is, H⊥r+1/2

can be constructed in the same way as the Hofstadter point Hr+1/2, but with
each of the lines AB′, AC ′, BA′, BC ′, CA′, and CB′ rotated by π/2.

Lemma 5.11. Hr has angular coordinates ψ = rθ and exact tricyclic coordi-
nates

c = R
sin
(
(r − 1) θ

)
sin(θ)

.
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H⊥r+1/2 has angular coordinates ψ =
(
r + 1

2

)
θ + π

2 and exact tricyclic coor-

dinates

c = R
cos
(
(r − 1

2 ) θ
)

cos
(
(r + 1

2 ) θ
)

Proof. This follows immediately from Theorem 2.11. �

The following theorem appears as a conjecture of Randy Hutson in entry
X(360) and X(5961) of [8]. Part (ii) of the theorem is already known, and
can be found in [6] without the restriction on r (that is, it is in fact true that
H0 and H1 are isogonal conjugates).

Theorem 5.12. Let Hr denote the Hofstadter r-point. Then

(i) The inverse-in-circumcircle of Hr is H2−r when r 6= 0, 1, 2,
(ii) The isogonal conjugate of Hr is H1−r when r 6= 0, 1,

(iii) The antigonal conjugate of Hr is H−r when r 6= −1, 0, 1.

Proof. By Lemma 5.11, Hr has angular coordinates ψ = rθ. By Proposi-
tion 3.4, the inverse of Hr has angular coordinates

ψ = −rθ + 2θ = (2− r)θ.
By Proposition 3.2, the isogonal conjugate of Hr has angular coordinates

ψ = −rθ + θ = (1− r)θ.
By Proposition 3.1, the antigonal conjugate of Hr has angular coordinates

ψ = −rθ.
By Lemma 5.11, The right-hand sides match the angular coordinates of H2−r,
H1−r, and Hr, respectively, provided the listed constraints on r are observed.

�

Theorem 5.13. The maps h and ρ = h2, where h is defined as in Lemma 5.6,
act on the points Hr and H⊥r+1/2 as in Fig. 9. Note that ρ is isogonal conju-

gation followed by inversion (cf. Remark 5.10).

X(265) H O X(186)

· · · // H−2r

h
��

� ρ // H−1r

h
��

� ρ // P∞r

h
��

� ρ // P0r

h
��

� ρ // H2r

h
��

� ρ // H3
� · · ·

· · · // H⊥−1.5

L
h

EE

�
ρ
// H⊥−0.5

L
h

EE

�
ρ
// H⊥0.5

L
h

EE

�
ρ
// H⊥1.5

L
h

EE

�
ρ
// H⊥2.5

L
h

EE

� · · ·

X(80) I X(36)

Figure 9. The maps h and ρ act on Hofstadter points.
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Proof. The map h is defined in angular coordinates by ψ 7→ ψ + (π + θ)/2.
As described in Theorem 4.3, the point P∞ has angular coordinates ψ = 0.
Hence hn(P∞) has angular coordinates ψ = (n/2)(π+ θ). When n = 2r, this
becomes ψ = rθ. Therefore h2r(P∞) = Hr, provided that r 6= 0, 1. Similarly,
when n = 2r + 1, ψ =

(
r + 1

2

)
θ + π

2 . So h2r+1(P∞) = H⊥r+1/2. �

Note that H0 and H1 are missing from the diagram in Theorem 5.13,
and that these are exactly the “special” Hofstadter points which are obtained
as a limit of other Hofstadter points as r → 0 and r → 1.
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