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Abstract: The Perspective Three-Point Pose Problem (P3P) is an old and basic problem in the area of camera tracking.
While methods for solving it have been largely successful, they are subject to erratic behavior near the so-
called “danger cylinder.” Another difficulty with most of these methods is the need to select the physically
correct solution from among various mathematical solutions. This article presents a new framework from
which to study P3P for non-collinear control points, particularly near the danger cylinder. A multivariate
Newton-Raphson method to approximately solve P3P is introduced. Using the new framework, this is then
enhanced by adding special procedures for handling the problematic behaviour near the danger cylinder. It
produces a point on the cylinder, a compromise between two nearly equal mathematical solutions, only one
of which is the camera’s actual position. The compromise diminishes the risk of accidentally converging
to the other nearby solution. However, it does impose the need, upon receding from the danger cylinder
vicinity, to make a selection between two possible approximate solution points. Traditional algebraic methods
depend on correctly selecting from up to four points, each time the camera position is recomputed. In the new
iterative method, selecting between just two points is only occasionally required. Simulations demonstrate
that a considerable improvement results from using this revised method instead of the basic Newton-Raphson
method.

1 INTRODUCTION

1.1 Overview of P3P

The Perspective Three-Point Pose Problem (P3P) is
concerned with the determination of the position and
orientation of a camera, based on the images of three
known fixed points, called “control points.” Attention
in this article will be limited to the pinhole camera
model. In the camera’s reference frame, the three per-
spective lines connecting the camera’s optical center
(center of perspective projection) to the three control
points are presumed to be known.

While camera tracking usually involves using
more than just three control points, unfortunate cir-
cumstances can arise that limit the camera’s view
to only three points for extended periods of time.
This limitation on control points presents a signifi-
cant challenge to accurately following the camera in

a computer system. This is especially true when reli-
able estimates need to be made rapidly due to contin-
uous camera movement.

The difficult part of P3P is the determination of
the camera’s position, after which its orientation can
readily be determined, as discussed in Subsection 2.1.
Thus, this article will focus on the position issue. Us-
ing long established “algebraic methods,” mathemat-
ical reasoning is capable of providing a small set of
(up to four) possible camera positions.

However, correctly choosing from among these
solutions has long been a thorny issue, and it is im-
possible using solely the P3P data. When only three
control points are viewable, it is often still possible
though to make an informed guess as to which posi-
tion is the correct one, based on additional informa-
tion such as known recent camera positions.

Less commonly considered iterative methods,
such as the ones discussed in Section 5, avoid the need



to select from among several options, but only provide
approximate solutions. They can also break down and
end up tracking the wrong solution. Nevertheless, the
simpler nature of the computations involved, and the
avoidance of a selection process would make them
preferable to algebraic methods in certain computa-
tionally limited circumstances.

All current methods for solving P3P suffer insta-
bilities due to multiple solutions and computational
error when the camera’s optical center is too close to
the so-called “danger cylinder” region. The danger
cylinder is the circular cylinder that contains the three
control points, and whose axis is perpendicular to the
plane containing these points.

Repeated solutions to the systems of P3P equa-
tions occur when the optical center is on the dan-
ger cylinder, resulting in singular behavior. Several
studies of this phenomenon have been made, some
of which are mentioned in the next subsection. The
present article too is heavily focused on contending
with the obstacles that result when the camera is too
close to the danger cylinder.

1.2 Related Work

Since it was first introduced and solved (Grunert,
1841), various efforts have been made to better under-
stand P3P and its underlying system of equations. Al-
ternative methods for solving P3P have also been in-
troduced, though these either proceeded along some-
what similar lines as the original solution (Haralick
et al., 1994), or else employ some sort of approx-
imation technique, such as (DeMenthon and Davis,
1992), (Fung and Wong, 1998) and Appendix A.3
of (Fischler and Bolles, 1981). The latter two are
among the very few efforts involving iterative meth-
ods. Some other early work, much of it motivated
by aerial reconnaissance concerns, can be found in
(Merritt, 1949), (Müller, 1925), (Smith, 1965) and
(Thompson, 1966).

Several studies have classified solutions, such as
(Faugère et al., 2008), (Gao et al., 2003), (Sun and
Wang, 2010), (Tang et al., 2008), (Tang and Liu,
2009), (Wolfe et al., 1991), (Zhang and Hu, 2005).
Some of the more recent algorithms for solving P3P,
and generalizations and restrictions of it, can be found
in (Nistér, 2007), (Pisinger and Hanning, 2007),
(Rieck, 2010), (Rieck, 2011), (Rieck, 2012), (Xi-
aoshan and Hangfei, 2001). A recent reexamination
of the danger cylinder phenomenon can be found in

(Zhang and Hu, 2006).

1.3 Layout of this Article

This article revisits some material that was previously
presented in (Rieck, 2012). However, it does so us-
ing a far firmer foundation, and it provides consider-
ably more detail, including proofs. The earlier paper
was extremely brief, and just presenting certain facts,
without proofs.

In particular, Section 3 (of the present work), on
planar geometry, is entirely new, as is the whole ap-
proach to proving Theorem 1, in Section 4. Together
this new material makes the theorem far more intu-
itive and accessible. Section 2 introduces this theo-
rem, along with some foundational notation, concepts
and relations.

Section 5, which is also new, introduces an itera-
tive camera tracking technique based on P3P and The-
orem 1. Specific details for this algorithm are found
in the appendices. The results of simulations using
this new method are also presented in Section 5.

2 ANALYSIS OF P3P

The camera model to be used throughout this article is
the pinhole model, and the camera is presumed to be
calibrated. The camera’s image plane is presumed to
have two perpendicular axes that pass through the im-
age center. The focal length, that is, the distance be-
tween the optical center (center of perspective projec-
tion) and the image center, is a presumed to be known.

Discussions of camera tracking invariably entail
multiple 3D-frames of reference. At any moment in
time, moving between any two such coordinate sys-
tems is in principle simply a matter of applying the
appropriate affine transformation. This is uniquely
determined by specifying how any four points in gen-
eral position are to be transformed.

We will begin with a fixed reference frame for the
environment being viewed. The positions of the con-
trol points in this reference frame are presumed to be
known.



2.1 Determining Orientation from
Position

Suppose, for a moment, that the camera’s position in
the environmental reference frame can somehow be
determined, though determining this is the principal
problem of concern in this article. This means in par-
ticular that the distances from the control points to the
optical center can readily be computed.

The environmental reference frame can then be
translated so as to place the camera’s optical center
at the origin, without changing the directions of the
axes. Let us refer to this as the “shifted” environ-
mental reference frame. Now, initially, but probably
incorrectly, suppose that in this reference frame, the
camera is oriented so as to point along the x-axis’s
positive direction, with the image plane’s first axis’s
positive direction matching the y-axis’s positive di-
rection, and the image plane’s second axis’s positive
direction matching the z-axis’s positive direction.

It is then possible to examine the actual images
of the control points in the image plane, and to-
gether with the computed distances from the control
points to the optical center, determine where the con-
trol points would need to be located so as to produce
these images. That is, it is straightforward to figure
out where the control points would need to be in the
shifted environmental reference frame, based on the
tentatively presumed camera pose.

Now, based also on a knowledge of where the con-
trol points actually are in the shifted environmental
reference frame, versus where they should be when
using the above orientation assumption, one can de-
termine the unique rotation that moves one of these
sets of points into the other set of points. This might
be accomplished using Euler angles, but in any case,
yields the camera’s true orientation. This is why
it was stated in the introduction that once the cam-
era’s position is determined, its orientation can also
be readily determined.

2.2 Quantities and Systems

Let us begin a careful study of the essential P3P prob-
lem, focusing solely on the issue of finding the cam-
era’s position in the environmental frame of reference.
When the three control points are not collinear, they
lie on a unique circle, which is a basic fact from clas-
sical geometry. We will assume henceforth that the

Figure 1: Danger cylinder (side view)

control points are not collinear. Several other stud-
ies, such as (Hanning et al., 2006), have focused in-
stead on the special case where the control points are
collinear.

To simplify the notation, we may conveniently
suppose that the unit of distance has been chosen so
that this circle has radius one. The formulas to be
presented in this article can easily be scaled so as to
accommodate an arbitrary radius. In Theorem 1, just
divide d1,d2,d3,x,y and z by this radius.

For our purpose, it will be handy to fix a frame
of reference for the environment, in which the three
control points remain fixed. A Cartesian coordinate
system will be set such that the three control points,
P1, P2, P3, lie on the unit circle centered about the
origin, in the xy-plane. For j = 1,2,3, let

(x j,y j,0) = (cosφ j,sinφ j,0)

be the coordinates of Pj, with −π≤ φ j ≤ π, and let

t j = tan(φ j/2) .

Also let d j be the distance between the two control
points other than Pj. From the standpoint of P3P, all
these quantities are known a priori. Figure 1 shows
the r j and d j, but in the special case where P is on the
danger cylinder.

The unknown coordinates of the camera’s optical
center P will be denoted



Figure 2: Danger cylinder (top-down view)

(x,y,z) = (ρcosφ,ρsinφ,z) .

with ρ≥ 0 and −π≤ φ≤ π.
Let r j be the distance between P and Pj ( j =

1,2,3), which is also unknown. For j = 1,2,3, let
θ j be the angle at P created by the two rays to the
two control points other than Pj. These angles are
presumed to be known since they are easily computed
from the camera images of the control points and the
camera intrinsics. Figure 2 shows these angles, but in
the special case when P is on the danger cylinder.

Let

c j = cosθ j and s j = sinθ j ( j = 1,2,3) .

An important geometric quantity that will be dis-
cussed later, and that can be computed based solely
on the (known) cosines c1, c2 and c3 is

η =
√

1− c2
1− c2

2− c2
3 +2c1c2c3 .

With the setup described here, the danger cylin-
der is given by the equation x2 + y2 = 1. It is a well-
studied fact (Zhang and Hu, 2006) that when the op-
tical center is on or near the danger cylinder, tradi-
tional techniques for solving the P3P run into diffi-
culties caused by imprecision in numerical computa-
tions. Figures 1 and 2 shows the situation when the
optical center is on the danger cylinder, and above the
horizontal plane containing the control points.

The problem of determining the camera’s optical
center P is classically broken down into a pair of sys-
tems of quadratic polynomials, as follows:


r2

2 + r2
3−2c1r2r3 = d2

1
r2

3 + r2
1−2c2r3r1 = d2

2
r2

1 + r2
2−2c3r1r2 = d2

3

(1)


(x− x1)

2 +(y− y1)
2 + z2 = r2

1
(x− x2)

2 +(y− y2)
2 + z2 = r2

2
(x− x3)

2 +(y− y3)
2 + z2 = r2

3

(2)

The first system just amounts to three applications
of the Law of Cosines. The c j and d j are known
quantities, and one must solve for the unknowns r j.
Unfortunately, this system is rather tedious to solve.
What is worse is that in general there will be multi-
ple real-valued solutions, and there can be as many
as four possible values for each of r2

1, r2
2, and r2

3.
Of course only one of the solutions corresponds to
the camera’s actual position. Additional information
would be needed to decide which of the mathematical
solutions is the correct physical solution.

Solving the first system is traditionally handled by
eliminating two of the r j, say r1 and r2, and thus ob-
taining a quartic polynomial in r2

3, or perhaps some
closely related value (Haralick et al., 1994). One of
the present article’s referees has suggested a nice way
to obtain a quartic in r2

3. One can multiply each of
the three equations in (1) by each of the six quantities
1, r1, r2, r2

1, r1r2, r2
2, thus obtaining eighteen equa-

tions. These can be viewed as homogeneous linear
equations in the fifteen quantities 1, r1, r2, r2

1, r1r2,
r2

2, r3
1, r2

1r2, r1r2
2, r3

2, r4
1, r3

1r2, r2
1r2

2, r1r3
2, r4

2, with co-
efficients involving c1, c2, c3, d1, d2, d3 and r3. The
18-by-15 coefficient matrix of this homogeneous sys-
tem must have vanishing 15-by-15 sub-determinants.
This requirement amounts to the vanishing of a quar-
tic polynomial in r2

3 that does not involve r1 or r2.
Once the r j are known, the second system (used

also in many other circumstances, such as GPS nav-
igation) can then readily be solved for the camera’s
position coordinates x, y and z. In fact, the third equa-
tion in (2) can be subtracted from each of the first two
equations in (2) to obtain two linear equations in x
and y. One can visualize the second system as deal-
ing with the intersection of three specific spheres in
space.

This approach, first solving (1) and then solving
(2), works fairly well, as long as the control points
are reasonably far apart, the optical center is reason-
ably close to the control points, and the optical center
is reasonably far from the danger cylinder. The exact



meaning of these conditions depends of course on the
precision used in performing floating point computa-
tions. In practice, camera issues such as pixelation
also causes imprecision that can adversely affect the
results.

Since we are ultimately interested in obtaining x,
y and z, with r1, r2 and r3 only serving as interme-
diaries, one might consider eliminating the latter to
obtain a single system of three equations in x, y and
z. This is easily accomplished as follows. Begin by
rewriting the equations in (1) by putting the terms in-
volving the cosines on one side and the other terms
on the other side. For instance, the first equation be-
comes 2c1r2r3 = r2

2 +r2
3−d2

1 . Now square both sides
of these equations, and replace each r2

j with the left
side of the matching equation in (2). While this does
eliminate the r j, the resulting equations involve fourth
degree polynomials in the unknowns x, y and z.

One would like to have a Gröbner or similar basis
for the new system of equations, involving x, y and z
as the only unknowns. However, direct methods for
computing such a basis are rather tedious, and the au-
thor is unaware of any successful efforts along these
lines. The next subsection provides a useful alterna-
tive approach, one which avoids finding a Gröbner ba-
sis, and which makes a very compelling connection
with the danger cylinder.

2.3 The Principal Theorem

A radically different, and in some respects simpler
and faster, approach to P3P, will be developed in this
article. It is founded on the following “principal the-
orem.” The theorem relates a simple rational combi-
nation of the known sines and cosines s1, s2, s3, c1,
c2 and c3, and the known separation distances d1, d2

and d3, to a two-part rational function of the desired
unknowns x, y, z. It will be proved later in Section 4.

In order to smoothly state the theorem, it will be
helpful to introduce a homogeneous quadratic poly-
nomial of x and y that is parameterized by an arbitrary
angle ω, as follows:

Σ(ω; x,y) = (sinω)(y2− x2)+(cosω)(2xy) .

Theorem 1.[
d2

1s2
2 − d2

2s2
1
]/

η2 =

A(φ1,φ2,φ3; x,y) +

B(φ1,φ2,φ3; x,y) 1− x2− y2

z2 ,
(3)

where

A(φ1,φ2,φ3; x,y) = csc
(

φ1−φ2

2

)
·

Σ

(
φ1 +φ2 +2φ3

2
; x+ x3, y+ y3

)
(4)

and

B(φ1,φ2,φ3; x,y) =
d2

1 −d2
2

4
− csc

(
φ1−φ2

2

)
·

Σ

(
φ1 +φ2 +2φ3

2
; x − x1 + x2

2
, y − y1 + y2

2

)
.
(5)

The above remains true when the subscripts 1, 2
and 3 are permuted. This generally results in three
distinct (though linearly dependent) equations.

Notice that the two expressions A(φ1,φ2,φ3; x,y)
and B(φ1,φ2,φ3; x,y) are simply quadratic polynomi-
als in x and y, with known coefficients. Notice too that
on the danger cylinder x2 + y2 = 1, equation (3) be-
comes simply (d2

1s2
2− d2

2s2
1)/η2 = A(φ1,φ2,φ3; x,y).

Also, the quantity z2/(1−x2−y2) can be replaced by
another variable W , thus eliminating z, and resulting
in three cubic equations in x, y and W that are linear
in W and quadratic in x and y.

2.4 Repeated solutions

In (Rieck, 2011), system (1) is treated as the equa-
tions for transforming a coordinate system (r1,r2,r3)

to a coordinate system (c1,c2,c3), and the determi-
nant of the Jacobian matrix J (with entries ∂ci/∂r j)
is computed and shown to vanish on and only on the
danger cylinder.

It is further stated, but not proved, there that re-
peated solutions to system (1), solving for (r1,r2,r3)

given (c1,c2,c3), occur on and only on the danger
cylinder. This is proved here, as follows. Note though
that (Thompson, 1966) and (Zhang and Hu, 2006) al-
ready provide a geometric sense of the significance of
danger cylinder and its connection with J.

Given a point (x,y,z), let (r1,r2,r3) be as in (2).
Let (c1,c2,c3) then be as in (1). Consider some
(u1,u2,u3) that also satisfies (1) when u j stands in



place of r j ( j = 1,2,3). If we express each ci in
terms of r1,r2,r3, and also in terms of u1,u2,u3, we
can eliminate the ci to obtain three equations relating
r1,r2,r3,u1,u2 and u3, each of which can be put in
the form of a polynomial equation (by multiplying by
denominators).

Let pi = pi(r1,r2,r3,u1,u2,u3) = 0, for i = 1,2,3,
be these three polynomial equations, scaled so that the
coefficient of r2

2 (and also r2
3) in p1 is −u2u3, and so

forth. Let M be the 3× 3 matrix formed by taking
the partial derivatives of the pi with respect to u j, and
then setting each u j to r j (i, j = 1,2,3).

Proposition 1. The matrix M can be obtained from
the matrix J by multiplying the top row by 2r2

2r2
3, mul-

tiplying the middle row by 2r2
3r2

1, and multiplying the
bottom row by 2r2

1r2
2. Assuming that no r j equals

zero, det(M) = 0 if and only det(J) = 0 if and only
if x2 +y2 = 1. Hence (r1,r2,r3) is a repeated solution
to system (1) if and only if x2 + y2 = 1.

Proof. Proving the claimed connection between that
matrix M and the matrix J just amounts to carry-
ing out the described computations, and is straight-
forward. The fact that det(J) = 0 if and only if
x2 + y2 = 1 was established in (Rieck, 2011). The
vector (p1, p2, p3) as a function of (u1,u2,u3), with
(r1,r2,r3) fixed, vanishes at (u1,u2,u3) = (r1,r2,r3).
However, it is locally invertible there unless det(M) =

0. The vector equation (p1, p2, p3) = (0,0,0) has a re-
peated solution at (u1,u2,u3) = (r1,r2,r3) if and only
if it is not locally invertible here, that is, if and only if
det(M) = 0, that is, if and only if det(J) = 0, that is,
if and only if x2 + y2 = 1.

2.5 Preliminary Analysis

To analyze the setup more completely, a number of
basic identities need to be established first. These
follow immediately from standard trigonometric
identities. They are compiled in the following
lemma. This is followed by an important but imme-
diate corollary.

Lemma 1. The following identities hold:

(a) x j = cosφ j = (1− t2
j )/(1+ t2

j ) ( j = 1,2,3)

(b) y j = sinφ j = 2t j /(1+ t2
j ) ( j = 1,2,3)

(c) cos(φ j/2) = (1+ t2
j )
−1/2 ( j = 1,2,3)

(d) sin(φ j/2) = t j (1+ t2
j )
−1/2 ( j = 1,2,3)

(e) d1 = [(x2− x3)
2 +(y2− y3)

2]1/2

= 2 sin( |φ2−φ3|/2 )

= 2 | t2− t3 | [(1+ t2
2 )(1+ t2

3 )]
−1/2

d2 = [(x3− x1)
2 +(y3− y1)

2]1/2

= 2 sin( |φ3−φ1|/2 )

= 2 | t3− t1 | [(1+ t2
3 )(1+ t2

1 )]
−1/2

d3 = [(x1− x2)
2 +(y1− y2)

2]1/2

= 2 sin( |φ1−φ2|/2 )

= 2 | t1− t2 | [(1+ t2
1 )(1+ t2

2 )]
−1/2

(f) r j = [(x− x j)
2 +(y− y j)

2 + z2 ]1/2

= [ 1 + x2 + y2 + z2

− 2xx j−2yy j ]
1/2

= {1 + x2 + y2 + z2

− [2(1− t2
j )x + 4 t j y ]/(1+ t2

j )}1/2

( j = 1,2,3)

(g) c1 = cosθ1 = (r2
2 + r2

3−d2
1) / 2r2r3

c2 = cosθ2 = (r2
3 + r2

1−d2
2) / 2r3r1

c3 = cosθ3 = (r2
1 + r2

2−d2
3) / 2r1r2

Proof. Item (a) can be established like so:
(1 − t2

j )/(1 + t2
j ) = (1 − tan2 φ j/2 )/(1 + tan2 φ j/2 )

= (cos2 φ j/2 − sin2 φ j/2 )/(cos2 φ j/2 + sin2 φ j/2 )

= (cos2 φ j/2 − sin2 φ j/2 ) = cosφ j. Similarly for
item (b): 2t j/(1+ t2

j ) = 2 tan φ j/2 /(1+ tan2 φ j/2 ) =

2 sin φ j/2 cos φ j/2 = sinφ j. For item (c): 1+ t2
j =

1 + tan2 φ j/2 = sec2 φ j/2 . Because of the chosen
range for φ j, (c) now follows since cos φ j/2 is non-
negative. Item (d) is now immediate since sin φ j/2
= tan φ j/2 cos φ j/2 . For (e), notice that the isosceles
triangle whose vertices are P2, P3 and the origin,
can be cut into two congruent right triangle, leading
immediately to the fact that d1 = 2 sin( |φ2−φ3|/2 ).
Using the basic trigonometry together with the
preceding formulas, the complete claim concerning
d1 follows. Ditto for d2 and d3. Concerning (f), apply
the distance formula and use the earlier formulas.
Item (g) simply restates the Law of Cosines seen
earlier.

Corollary 1. The quantities x1, x2, x3, y1, y2, y3, r2
1,

r2
2, r2

3, d2
1 , d2

2 , d2
3 , c2

1, c2
2, c2

3, s2
1, s2

2, s2
3, c1c2c3, d1d2d3

and η2 can all be expressed as rational functions of
t1, t2, t3, x, y and z.



Proof. Each of these quantities can be immediately
checked using the formulas in Lemma 1 and the defi-
nition of η.

Now, for P3P, it is supposed that the quantities
φ1,φ2,φ3, t1, t2, t3,x1,x2,x3,y1,y2,y3,θ1,θ2,θ3,c1,c2,
c3,s1,s2,s3,d1,d2,d3 and η are known, and that the
goal is to determine the unknown optical center
coordinates x,y and z. We are also assuming that
ρ,φ,r1,r2 and r3 are unknown. Henceforth, we will
suppose that the control points and the optical center
are not coplanar, so that η > 0 and z 6= 0.

Lemma 2. r1r2r3 η = d1d2d3|z|/2, which equals six
times the volume of the tetrahedron whose vertices
are the optical center and the three control points.
This also equals the volume of the parallelepiped
having these four points among its vertices, with each
control point adjacent to the optical center along an
edge of the parallelepiped.

Proof. The volume of the parallelepiped equals the
absolute value of the (scalar) triple product of the
three vectors from the optical center to the control
points. This can be expressed as follows:∣∣∣∣∣∣det

 x1− x y1− y −z
x2− x y2− y −z
x3− x y3− y −z

∣∣∣∣∣∣ .

To see that r1r2r3 η is also this volume, divide
each of the vectors by its length (r j). This yields three
normal vectors, n̂1, n̂2, n̂3. The Gramian of these vec-
tors is the determinant

det

 1 c3 c2

c3 1 c1

c2 c1 1

 = η
2 ,

whose entries are the dot products n̂i · n̂ j. But this
Gramian is well-known to equal the square of the vol-
ume of the parallelepiped defined by the three normal
vectors. So this volume equals η. We must scale this
by multiplying by r1r2r3 to obtain the volume of the
original parallelepiped.

Now, the tetrahedron’s volume is of course one-
third its height |z| times the area of its base triangle,
whose vertices are P1, P2 and P3. This triangle has
circumradius one, and hence, by a well-known for-
mula, its area is d1d2d3/4. The tetrahedron’s volume

is well-known to be one-sixth the volume of the cor-
responding parallelepiped. From this, we can obtain
d1d2d3 |z|/2 as the volume of the parallelepiped.

2.6 The Quadratic Polynomial Σ(ω; x,y)

Theorem 1 involves the homogeneous quadratic poly-
nomial Σ(ω ; x, y). In fact, it occurs in both (4) and
(5). It will be helpful to introduce alternative ways
of parameterizing this. For fixed parameters t1, t2, t3,
define the following:

Σ(t1, t2, t3; x,y) = (6)[
(t1 + t2 +2t3−2t1t2t3− t1t2

3 − t2t2
3 ) (y

2− x2)

+2(1− t1t2−2t1t3−2t2t3− t2
3 + t1t2t2

3 ) xy
]

/
[
(1+ t2

1 )
1/2(1+ t2

2 )
1/2(1+ t2

3 )
]
,

and Σ(t1, t2; x,y) = Σ(t1, t2,0; x,y) = (7)[
(t1 + t2) (y2− x2)+2(1− t1t2) xy

]
/
[
(1+ t2

1 )
1/2(1+ t2

2 )
1/2
]
.

Lemma 3. The following facts hold:

� Σ(ω; x,y) = (sinω)(y2− x2)+(cosω)(2xy)
= (sinω) [−ρ2 cos(2φ)]+(cosω) [ρ2 sin(2φ)]

= ρ2 sin(2φ−ω)

� Σ(ω; x,y) = [(cosω+1)x+(sinω)y] ·
[(−sinω)x+(cosω+1)y ] / (cosω+1)
= [(cosω−1)x+(sinω)y] ·
[(−sinω)x+(cosω−1)y ] / (cosω−1)

� Σ((φ1 +φ2)/2; x,y) = Σ(t1, t2; x,y)

� Σ((φ1 +φ2 +2φ3)/2; x,y) = Σ(t1, t2, t3; x,y)

Proof. The formulas in the first item follow quickly
from the double angle and sum-of-angle formulas for
the sine and cosine functions. Recall here that (x,y) =
(ρcosφ,ρsinφ). For the second item, the factoriza-
tions of Σ(ω;x,y) into products of linear parts are
straightforward to check, using just the Pythagorean
trigonometric identity cos2 ω+ sin2

ω = 1.
For the third item, let ∆ = [(1 + t2

1 )(1 +

t2
2 )]

1/2. Now, from Lemma 1, we see that sinω =



sin(φ1/2)cos(φ2/2) + cos(φ1/2)sin(φ2/2) = (t1 +
t2)/∆, and also cosω = cos(φ1/2)cos(φ2/2) −
sin(φ1/2)sin(φ2/2) = (1− t1t2)/∆. This immedi-
ately yields Σ(ω; x,y) = Σ(t1, t2; x,y).

To establish the last item, substitute φ1 + φ3 and
φ2+φ3 for φ1 and φ2 in the third part. This amounts to
substituting (t1+ t3)/(1− t1t3) and (t2+ t3)/(1− t2t3)
for t1 and t2. The claim is then straightforward to
deduce.

Corollary 2. The polynomial Σ(ω; x,y) vanishes
when (x,y) is a point on a line through the origin with
slope either tan(ω/2) or −cot(ω/2). It does not van-
ish at any other points.

Proof. Σ(0; x,y) = 2xy, which vanishes when and
only when x = 0 or y = 0. More generally, we see
from the formula Σ(ω; x,y) = ρ2 sin[2(φ−ω/2)] that
Σ(ω; x,y) vanishes when and only when (x,y) is a
point on a line through the origin with either slope
tan(ω/2) or slope tan(ω/2+π/2) =−cot(ω/2).

3 PLANE GEOMETRY FACTS

In order to help make sense of Theorem 1, and ulti-
mately prove it, this section will explore a few results
from Euclidean geometry. Later, in the next section,
these results will be used in a three-dimensional set-
ting, and combined with some solid geometry results,
concluding with a short proof of Theorem 1.

3.1 Significant Points and Lines

Throughout this section, P1, P2 and P3 continue to be
fixed points on the unit circle, in the Cartesian plane
(xy-plane), while P ′ will denote an arbitrary point in
this plane. To make the connection with the P3P dis-
cussion, P ′ represents the orthogonal projection of the
optical center P onto the xy-plane. The notation of
Section 2 will be continued here.

Certain lines, based on P1, P2 and P3, are of partic-
ular importance. The first two, denoted `1 and `2, pass
through the origin, are perpendicular to each other,
and one of them has slope tan[(φ1 + φ2 + 2φ3)/4].
Note that if multiples of 2π are added to φ1, φ2 and
φ3, then (φ1 +φ2 +2φ3)/4 changes by the addition of

Figure 3: Lemma 4 Setup

a multiple of π/2, which might interchange `1 and `2.
Thus {`1, `2 }, as an unordered pair of lines, is well
defined based solely on the points P1, P2 and P3.

Let P3
′ denote the point on the unit circle that is

antipodal to P3. Take `1
′ and `2

′ to be the lines paral-
lel to `1 and `2, obtained by the translation that moves
the origin to P3

′. Similarly, take `1
′′ and `2

′′ to be the
lines parallel to `1 and `2, obtained by the translation
that moves the origin to the midpoint M between P1

and P2. (Alternatively, the lines `1
′ and `2

′ could be
defined as the lines that contain P3

′ and one of the two
points R and R ′ on the unit circle equidistant from P1

and P2, as seen in the proof of Lemma 4.)

3.2 Some Geometric Lemmas

Lemma 4. If P ′ is on `1
′ ∪ `2

′, then the distance from
P1 to the orthogonal projection of P ′ onto the line←−→
P1P3 equals the distance from P2 to the orthogonal
projection of P ′ onto the line

←−→
P2P3 .

Proof. Without loss of generality, by rotating the con-
figuration as needed, we may assume that φ3 = 0.
That is, we may assume that P3 = (1,0) and P3

′ =

(−1,0).
Let Q1 and Q2 be the orthogonal projections of P ′

onto
←−→
P2P3 and

←−→
P1P3 , respectively, as seen in Figure

3. In general, besides P3
′, the unit circle intersects

`1
′∪ `2

′ in two other points, which are labeled R and
R ′ in the figure. (This is so except in the special case
where either `1 or `2 is vertical, which means φ1 +

φ2 = 0, and which can be treated as a limiting case.)
If P ′ = P3

′, then Q1 = P2 and Q2 = P1, since
∠ P3

′P1 P3 and ∠ P3
′P2 P3 are both right angles, by



Figure 4: Lemma 5 Setup

the Inscribed Angle Theorem. Thus the claim is cor-
rect when P ′ = P3

′, since both distances are zero in
this case.

The points R and R ′ are actually antipodal on the
unit circle, and the slope of the line containing them
(and the origin) is tan[(φ1 +φ2)/2]. To see this, again
use the Inscribed Angle Theorem, comparing the in-
scribed angle ∠RP3

′P3, which is (φ1 + φ2)/4 mod
π/2, and the central angle ∠ROP3 (where O is the
origin), which is therefore (φ1 + φ2)/2 mod π. Ditto
with R ′ in place of R. So R and R ′ are thus both
equidistant from P1 and P2, and lie on `1

′ ∪ `2
′.

If P ′ = R, then by the Inscribed Angle Theorem
again, the angles ∠P3 P1 P ′ and ∠P3 P2 P ′ are either
similar or supplementary. If, R and P3 occur on the
same side of the line

←−→
P1P2 , then the angles are similar

(as in the figure); otherwise, they are supplementary
(as in the figure with R ′ used instead of R).

Either way, checking each case, it is straight-
forward to see that the interior angles ∠Q2 P1 P ′

and ∠Q1 P2 P ′ of the right triangles 4Q2 P1 P ′ and
4Q1 P2 P ′ must be similar. The two right triangles
are therefore similar. In fact, they are congruent since
their hypotenuses have the same length, since P ′ is
equidistant from P1 and P2. Therefore, the claim is
true when P ′ = R, and likewise when P ′ = R ′.

Now, when P ′ is a point between P3
′ and R (on

a line), then Q2 will be a point between P1 and S2,
where S2 is the orthogonal projection of R onto the
line
←−→
P1P3 . Clearly we have the following proportion-

ality between lengths of segments: P3 ′P ′ / P3 ′R =
P1 Q2 / P1 S2. Similarly, P3 ′P ′ / P3 ′R = P2 Q1 / P2 S1,
where S1 is the orthogonal projection of R onto the
line
←−→
P2P3 . But since P1 S2 = P2 S1, we see that P1 Q2

= P2 Q1. Thus the claim holds when P ′ is a point be-
tween P3

′ and R. This reasoning can be extended to
cover all situations where P ′, P3

′ and R are collinear,
and likewise where P ′, P3

′ and R ′ are collinear.

Lemma 5. If P ′ is on the unit circle, then the product
of the distance from P ′ to P1 times the distance from
P ′ to

←−→
P2P3 equals the product of the distance from P ′

to P2 times the distance from P ′ to
←−→
P1P3 .

Proof. Here we will continue to use the notation in
the proof of the previous lemma, but will also use
the notation in Figure 4. Thus e j and f j denote the
distance from P ′ to Pj and the distance from P ′ to
Q j, respectively ( j = 1,2). We need to show that
e1 f1 = e2 f2 when P ′ is on the unit circle.

Assuming that it is on the unit circle, the goal
will be achieved if 4Q2 P1 P ′ and 4Q1 P2 P ′ can be
shown to be similar right triangles. This is because
the proportions e1 : f2 and e2 : f1 would then be the
same. In the proof of Lemma 4, we showed that these
right triangle were congruent when P ′ = R (or R ′).
However, it was first established there that they were
similar right triangle, by reasoning that did not require
P ′ to be R or R ′, simply relying on the fact the P ′ was
on the unit circle. This applies here as well.

We will continue to use the notation used in the
proofs of the previous two lemmas, and in particular
e j and f j ( j = 1,2). Additionally, a quantity G is in-
troduced “visually” as follows.

If P ′ is inside the unit circle, let G denote the
square of the half length of the chord for the unit cir-
cle that has P ′ as midpoint. But if P ′ is outside the
unit circle, consider a line that passes through P ′ and
is tangent to the unit circle. Here let G be the negative
of the squared distance along this line from P ′ to the
point of intersection with the circle. Finally, if P ′ is
on the unit circle, then just set G = 0. Now, it is easy
to check that G = 1− x2− y2 in all these cases.

Lemma 6.

� e j =
[
(x− x j)

2 +(y− y j)
2
]1/2

� f1 = |(y2− y3)x+(x3− x2)y+ x2y3− x3y2| /d1

(Similarly for f 2
2 and f 2

3 )



Proof. The first item is immediate. To prove the sec-
ond item, consider the triangle with vertices P ′, P2

and P3. Its area is d1 f1/2. Now, lift each of these
three points one unit in the z-direction to obtain the
points (x,y,1), (x2,y2,1) and (x3,y3,1). The tetra-
hedron with these points and the origin as vertices
has volume d1 f1/6. But reasoning as in the proof of
Lemma 2, its volume also equals

1
6

∣∣∣∣∣∣det

 x y 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ .

Lemma 7.
e2

2− f 2
1 − e2

1 + f 2
2 =

sin
(

φ1−φ2

2

)
Σ(ψ; x+ x3,y+ y3) ,

where ψ = (φ1 +φ2 +2φ3)/2.

Proof. By Lemma 4, (e2
2− f 2

1 )− (e2
1− f 2

2 ) vanishes
on `1

′ ∪ `2
′, and it is also a quadratic polynomial in

x and y. But by Corollary 2, the same may be said of
Σ(ψ; x+ x3,y+ y3). Therefore, they both factor into
linear polynomials, and in fact they are equal up to a
constant factor.

The claim being made in the lemma is symmetric
with respect to simultaneous (and equal) rotations of
the control points and P ′. That is, if each φ j is re-
placed with φ j +α, and φ is likewise replaced with
φ+α, for a constant α, then both sides of the formula
remain unaffected. So without loss of generality, we
may assume that φ2 =−φ1, x2 = x1 and y2 =−y1.

When also (x,y)= (x3,y3), we see that (e2
2− f 2

1 )−
(e2

1− f 2
2 ) = e2

2−e2
1 = 4y1y3. But in this case, Σ(φ3; x+

x3,y + y3) = y3[(2y3)
2 − (2x3)

2] + 2x3(2x3)(2y3) =

4y3(y2
3 + x2

3) = 4y3. Therefore, for arbitrary (x,y), we
get (e2

2 − f 2
1 )− (e2

1 − f 2
2 ) = y1 Σ(φ3; x + x3,y + y3).

But y1 = sin[(φ1−φ2)/2]. So the claim in the lemma
is true in the special setup. Since it is invariant under
the rotations, it is also true in a general setup.

Lemma 8. If P ′ is on `1
′′ or on `2

′′, then 16(e2
1 f 2

1
− e2

2 f 2
2 ) = (d2

2 − d2
1)d2

3 G. More generally, for any
point P ′ in the plane,

4(e2
1 f 2

1 − e2
2 f 2

2 )

d2
3 G

+
d2

1 −d2
2

4
=

csc
(

φ1−φ2

2

)
Σ(ψ; x− x1 + x2

2
, y− y1 + y2

2
) ,

where ψ = (φ1 +φ2 +2φ3)/2.

Proof. As polynomials in x and y, e2
1 f 2

1 − e2
2 f 2

2 has
degree 4, while G has degree 2. Moreover, G must be
a factor of e2

1 f 2
1 −e2

2 f 2
2 since the latter vanishes when-

ever G does (Lemma 5). Therefore (e2
1 f 2

1 − e2
2 f 2

2 )/G
is a quadratic polynomial in x and y.

Now, as with the claim in Lemma 7, the claim
in Lemma 8 is symmetric with respect to simulta-
neous (and equal) rotations of the control points and
P ′. Therefore, we may again assume that φ2 = −φ1,
x2 = x1 and y2 =−y1. Then, by Lemma 6,

(e2
1 f 2

1 − e2
2 f 2

2 )/G1 =

y1 (x1− x3)
2 [2x3(x− x1)y+ y3(y2− x2 +2x1x−1) ]

(1− x1x3 + y1y3)(1− x1x3− y1y3)

= y1 [2x3(x− x1)y+ y3(y2− x2 +2x1x−1)] ,

where the step is follows because (1 − x1x3 +

y1y3)(1−x1x3−y1y3) = (x1−x3)
2, since x2

1 +y2
1 = 1

and x2
3 + y2

3 = 1. It is now straightforward to check
that

4(e2
1 f 2

1 − e2
2 f 2

2 )

d2
3 G

+
d2

1 −d2
2

4
=

e2
1 f 2

1 − e2
2 f 2

2

y2
1 G

+ y1y3 =

(x1− x3)
2
(
y3[y2− (x− x1)

2]+2x3(x− x1)y
)

y1 (1− x1x3 + y1y3)(1− x1x3− y1y3)
=

(x1− x3)
2 Σ(φ3; x− x1,y)

y1 (1− x1x3 + y1y3)(1− x1x3− y1y3)
=

Σ(φ3; x− x1,y)
y1

=

csc
(

φ1−φ2

2

)
Σ(ψ; x− x1 + x2

2
, y− y1 + y2

2
)
.

The lemma is true for the special setup here. Thus it
is also true in general.



4 SOLID GEOMETRY FACTS

The notation for the P3P setup, from the previous sec-
tions, will continue to be used here, and it will be
assumed that P ′ is the projection of P onto the xy-
plane. For i, j = 1,2,3 with i 6= j, we will let ci j and
si j denote the cosine and sine of the angle θi j at Pi,
between the ray directed towards P and the ray di-
rected towards Pk, where the set {i, j,k} equals the
set {1,2,3}. Here now are a number of relationships
of importance in establishing Theorem 1.

4.1 More Needed Relationships

Lemma 9. For i, j = 1,2,3 with i 6= j, the following
relations hold:

� s2
i + c2

i = 1

� s2
i j + c2

i j = 1

� e2
j + z2 = r2

j

� e2
i − f 2

j = r2
i c2

i j

� (d2
1s2

2−d2
2s2

1) / η2 = 4r2
1r2

2(c
2
21− c2

12) / d2
3z2

Proof. The first three items are straightforward to
check, and all involve measuring the sides of right
triangles, and applying the Pythagoras Theorem. For
the fourth, consider the right triangles 4Pi Q j P and
4Pi Q j P ′. The last item can be established through
a series of manipulations, involving algebra, basic
trigonometry, and Lemma 2. Here are the steps:

(d2
1s2

2−d2
2s2

1) / η2 =

r2
1r2

2(d
2
1s2

2−d2
2s2

1) / r2
1r2

2η2 =

[r2
2d2

1(r
2
1s2

2)− r2
1d2

2(r
2
2s2

1)] / r2
1r2

2η2 =

(by Law of Sines)

[r2
2d2

1(d
2
2s2

32)− r2
1d2

2(d
2
1s2

31)] / r2
1r2

2η2 =

d2
1d2

2(r
2
2s2

32− r2
1s2

31) / r2
1r2

2η2 =

d2
1d2

2(s
2
32/r2

1− s2
31/r2

2) / η2 =

(by Law of Sines)

d2
1d2

2(s
2
12/r2

3− s2
21/r2

3) / η2 =

d2
1d2

2(s
2
12− s2

21) / r2
3η2 =

d2
1d2

2(c
2
21− c2

12) / r2
3η2 =

(by Lemma 2)

4r2
1r2

2(c
2
21− c2

12) / d2
3z2.

Lemma 10.

lim
|z|→∞

d2
1s2

2−d2
2s2

1
η2 =

4(r2
2c2

21− r2
1c2

12)

d2
3

=
4(e2

2− f 2
1 − e2

1 + f 2
2 )

d2
3 .

Proof. By Lemma 9, (d2
1s2

2 − d2
2s2

1) / η2 =

4r2
1r2

2(c
2
21 − c2

12) / d2
3z2. Now, 4r2

1r2
2c2

21 / d2
3z2 =

4r2
1(e

2
2 − f 2

1 ) / d2
3z2, and this approaches

4(e2
2 − f 2

1 ) / d2
3 , since r2

1/z2 → 1. Likewise,
4r2

1r2
2c2

12 / d2
3z2 approaches 4(e2

1− f 2
2 ) / d2

3 . So the
claim follows.

Lemma 11.

z2
[

d2
1s2

2−d2
2s2

1
η2 − lim

|z|→∞

d2
1s2

2−d2
2s2

1
η2

]
does not depend on z, and equals

4(e2
2 f 2

2 − e2
1 f 2

1 )

d2
3 .

Proof. By the previous two lemmas, the quantity in
question equals

z2
[

4r2
1r2

2(c
2
21− c2

12)

d2
3z2

− 4(r2
2c2

21− r2
1c2

12)

d2
3

]
=

4
[
(r2

1− z2)(r2
2c2

21)− (r2
2− z2)(r2

1c2
12)
]

d2
3

=

4
[
e2

1(e
2
2− f 2

1 )− e2
2(e

2
1− f 2

2 )
]

d2
3

=

4(e2
2 f 2

2 − e2
1 f 2

1 )

d2
3 .

4.2 Proof of the Principal Theorem

We are now ready to rapidly establish the principal
theorem in this article.

Proof of Theorem 1. By Lemmas 1, 7, 8, 10 and 11,

d2
1s2

2−d2
2s2

1
η2 =

4(e2
2− f 2

1 − e2
1 + f 2

2 )

d2
3

− 4(e2
1 f 2

1 − e2
2 f 2

2 )

d2
3 z2

=



csc
(

φ1−φ2

2

)
Σ(ψ; x+ x3,y+ y3) +

1− x2− y2

z2

[
d2

1 −d2
2

4
−

csc
(

φ1−φ2

2

)
Σ(ψ; x− x1 + x2

2
, y− y1 + y2

2
)

]
,

where ψ = (φ1 +φ2 +2φ3)/2.

5 AN APPLICATION TO
CAMERA TRACKING

5.1 A special setup

In anticipation of an iterative P3P method to be intro-
duced and studied in this section, it will be necessary
to restrict attention to the special setup where the con-
trol points are such that t1 + t2 + t3 = 0. However, this
is actually not a serious restriction because it can al-
ways be achieved by simply rotating the coordinate
system about the z-axis:

Imagine rotating by an amount α, and thus chang-
ing φ j to φ j−α for j = 1,2,3. If we let u = tan(α/2),
then t j = tan(φ j/2) gets replaced by tan(φ j/2 −
α/2) = (t j − u)/(1 + t ju). Thus t1 + t2 + t3 is re-
placed by (t1 − u)/(1 + t1u) + (t2 − u)/(1 + t2u) +
(t3−u)/(1+ t3u). Upon setting this to zero and mul-
tiplying through by the common denominator, we ob-
tain a cubic equation in u. Solving for u then allows
for the determination of an angle of rotation α that
will result in the desired special setup.

Henceforth we will assume that we are working in
this special set up; that is, we will assume that t1 +
t2 + t3 = 0. Now, define the function

f (φ1,φ2,φ3; x,y,W ) = (t1− t2)(1+ t2
3 ) ·

[A(φ1,φ2,φ3; x,y)+B(φ1,φ2,φ3; x,y)W ] ,

with A and B as in Theorem 1. This theo-
rem provides a way to compute f (φ1,φ2,φ3; x,y,W ),
f (φ2,φ3,φ1; x,y,W ) and f (φ3,φ1,φ2; x,y,W ), when
W = (1− x2 − y2)/z2, solely from a knowledge of
t1, t2, t3,c1,c2, and c3, values which are presumed
known a priori in P3P. Some related functions turn out

to be handier to work with though. These are defined
as follows:

g(φ1,φ2,φ3; x,y,W ) = [ f (φ1,φ2,φ3; x,y,W )+

f (φ2,φ3,φ1; x,y,W ) + f (φ3,φ1,φ2; x,y,W ) ] / 3 and

h(φ1,φ2,φ3; x,y,W ) =

[ t3 f (φ1,φ2,φ3; x,y,W ) + t1 f (φ2,φ3,φ1; x,y,W )+

t2 f (φ3,φ1,φ2; x,y,W ) ] / (t2
1 + t2

2 + t2
3 ).

When W = (1− x2− y2)/z2, these two functions
can also be computed directly from t1, t2, t3,c1,c2, and
c3. But they are also conveniently expressed accord-
ing to the following corollary. The proofs of the
claims here are simply a matter of expanding the ex-
pressions involved and collecting the coefficients of x,
y and W , remembering that t1 + t2 + t3 = 0.

Corollary 3. Let tπ = t1t2t3 and tσ = t2
1 +t2

2 +t2
3 . Then

g(φ1,φ2,φ3; x,y,W ) = tπ(1−W )(x2− y2)+

(2+ tσ)(1−W )xy+2tπ(1−2W )x+

[2(1+W )+ tσ(1−W )]y−3tπ(1+W ), and

h(φ1,φ2,φ3; x,y,W ) = (2+ tσ)(1−W )(y2− x2)/2

+2tπ(1−W )xy+(2+ tσ−4W )x

−2tπ(1+W )y+(6− tσ)(1+W )/2.

When P = (x,y,z) is on the danger cylinder, so
that W = (1−x2−y2)/z2 = 0, the above formulas be-
comes simpler. In this case, using Weierstrass’ sub-
stitution, x = (1− t2)/(1+ t2), y = 2t/(1+ t2), for
an unknown t, we obtain two fourth degree polyno-
mial equation in t. By repeatedly using these and
eliminating higher powers of t, it is possible to re-
duce to a linear equation in t with known coefficients.
The derivation of this is too tedious to present here,
though it just amounts to manipulating polynomials
as is done when directly computing a resultant poly-
nomial. The resulting rational formula for t can be
found in Appendix C, though “ t ” here is “ t ′ ” there.
Also, “µ” and “ν” there are the computed value of the
functions g and h, respectively, based on the values of
t1, t2, t3,c1,c2, and c3.

This rational formula for t has been very success-
ful in computer simulations. It does produce the cor-
rect value for t, and so the correct values for x and y



as well, when P is on the danger cylinder. Even when
P is only near to the danger cylinder, it can be used
to find a point on the danger cylinder that is close to
P. This useful fact will be exploited in an iterative
algorithm to be developed in this section.

Once x and y have been determined, system (2)
can be used to find the value of each r2

j − z2. Sub-
stituting into (1) then produces three equations in just
one unknown, namely z2. These can be manipulated
to produce quadratic polynomial equations in z2, and
then the z4 terms can be eliminated. Three linear
equations in z2 can be produced in this manner. Ap-
pendix C has a formula for z2 (called “Z′ ” there)
based on these.

5.2 An iterative algorithm for
P3P-based camera tracking

Camera tracking based on three control points (ig-
noring orientation) is traditionally regarded as a mat-
ter of solving systems (1) and (2) algebraically, and
then somehow trying to select the actual solution from
among up to four mathematical solutions. Several dif-
ferent approaches to solving (1) have been developed
over the years (Hanning et al., 2006). These all de-
pend on being able to solve a quartic (i.e fourth de-
gree) polynomial.

While these approaches are generally capable of
finding all the mathematical solution to (1), there are
several drawbacks for dynamic camera tracking using
them. With four solutions to choose from, there is
no surefire way to know which of these is the phys-
ically correct solution. Knowing the camera’s recent
position and perhaps its recent movement can help to
more reliably choose the correct solution. However,
even with accurate history information, errors are par-
ticularly likely near the danger cylinder, where nearly
equal solutions occur. Clearly, as soon as an error oc-
curs, it is likely to propagate into the future, since the
history information would now become corrupt.

Moreover, the computational time and power
needed to solve the quartic equation might be pro-
hibitive in a realtime situation with only modest pro-
cessing power. As pointed out in (Rieck, 2011), solv-
ing a quartic equation whose coefficients and roots
are all real numbers might nevertheless demand arith-
metic involving complex numbers, placing an addi-
tional requirement on the computational environment.

An iterative tracking method will now be pro-

posed. The details are given in the pseudocode in
Appendix A and in the subsequent appendices. The
algorithm requires only real-number arithmetic, and
uses only the basic arithmetic operations and square
root operation. Unlike the “algebraic methods” just
discussed, it does not normally require selecting from
multiple mathematical solutions. The only exception
to this is near the danger cylinder, where the number
of potential solution options is limited to only two,
rather than four. Moreover, such a selection is only
necessary when moving away from the danger cylin-
der vicinity.

The new algorithm begins with a basic iterative
method (Appendix B) that is easy to understand and
derive, and which, in simulations, has been found
to accurately track a not-too-quickly moving cam-
era that is not too close to the danger cylinder. One
simply uses a multivariate Newton-Raphson method
on the system (1) in order to estimate the change in
(r1,r2,r3) based on a knowledge of the change in
(c1,c2,c3).

The Jacobian matrix J for this system, discussed
in Subsection 2.5, is straightforward to compute and
invert. However, it is not invertible on the dan-
ger cylinder, so the basic method breaks down there.
When this is not the case, one simply uses the approx-
imation  ∆r1

∆r2
∆r3

 ≈ J−1

 ∆c1
∆c2
∆c3


and the previous estimates for the r j to obtain updated
values for these. Once the r j have been estimated,
system (2) can be solved for (x,y,z).

When the camera gets too close to the danger
cylinder, there are two related difficulties. Firstly, as
suggested by Proposition 1, based on the measured
cosine angles c j, there will be multiple nearby math-
ematical solutions to systems (1) and (2), since re-
peated solutions occur on the danger cylinder. Typ-
ically (in fact almost always), there will just be two
such solutions, one of which is the physically correct
solution. Since the solutions are close together, it is
quite likely that the basic iterative method will acci-
dentally converge to the wrong solution.

Secondly, this iterative method involves dividing
by the determinant of J. Since this gets small near the
danger cylinder, computational difficulties leading to
inaccuracies arise. To mitigate this, one can replace
a too small J by some fixed quantity with the same



sign as J (±JCLIP). However, this slows down the
convergence rate for the algorithm.

Since the basic-iteration method runs into
difficulties near the danger cylinder, and could acci-
dentally end up latching onto an incorrect solution,
one might be inclined to switch to one of the alge-
braic methods in this case. However, besides being
complicated and requiring complex arithmetic, these
methods also have a problem with accuracy near the
danger cylinder. Essentially the same singularity is-
sue causes substantial roundoff error.

Moreover, while the camera estimate continues to
wander near the danger cylinder, it would be neces-
sary after each iteration to select the correct solution
from among multiple mathematical solutions that are
close together. Even with a good selection strategy,
the probability becomes high that a mistake would be
made during some selection.

In light of all these issues near the danger cylin-
der, a new variation on the above iterative algorithm
will now be introduced, one that modifies the earlier
updating process for estimating the position near the
danger cylinder. The essential philosophy of this al-
teration to the basic iterative method is that it is time-
consuming, futile and even dangerous to try to accu-
rately track the camera when it is too close to the dan-
ger cylinder. One should instead track a point on the
danger cylinder that is close to the camera.

The new algorithm senses when the camera es-
timate wanders close to the danger cylinder (within
a distance CLOSE). When this happens, rather than
simply relying on basic-iteration, hoping to find
the intended solution, it instead first locates a nearby
point on the danger cylinder. This can be rapidly ac-
complished in light of the previous subsection, us-
ing the method lock-onto-cylinder in Appendix
C. Note that this method does not depend on the pre-
viously estimated position, but only on the measured
cosine data and the fixed control point data.

The cosines c j corresponding to this point are next
checked to see if they are reasonably well matched
with the measured cosines. Specifically, a test is made
to see if the sum of the squared differences of the
cosines is within a fixed tolerance COSTOL. If not,
the algorithm reverts back to the basic-iteration
method. But if so, then the algorithm moves into the
“locked” (on the danger cylinder) state and uses the
point on the cylinder as the estimated camera posi-
tion.

It then remains locked onto the danger cylinder
during subsequent iterations of the method, until it
detects that the cosines corresponding to the danger
cylinder point are a poor match for the measured
cosines of the actual camera position. While in the
locked condition, the camera position estimate will
always be a point on the danger cylinder, found via
the method in Appendix C.

When a poor cosines match occurs, another
method is needed to find two nearby points, off the
danger cylinder, that tend to better match the mea-
sured cosines. It is then necessary to decide which
of these has the better chance of being closer to the
physical solution, i.e. the camera’s actual position.
This article offers no comment on how to make this
decision, but it is a serious issue for all P3P track-
ing methods that must select between multiple math-
ematical solutions. Work remains to be done concern-
ing this. Here at least there are only two solutions to
choose between, as opposed to potentially four solu-
tions produced by the algebraic methods.

A method exit-cylinder has been developed to
produce two such nearby points (off the cylinder), but
the exact details for it are not included in this article,
and will be presented elsewhere. This method does
a good job when the camera is not moving too fast,
as will be demonstrated in the next subsections. A
very brief explanation of the method’s derivation is as
follows.

Consider the prior estimate point (x,y,z) on the
cylinder, with associated values r1,r2,r3. Consider
also the error in these values and those of the camera’s
actual position, off the cylinder. Up to third order,
there exists a certain linear combination of ∆r1, ∆r2

and ∆r3, with coefficients involving r1, r2, r3, d1, d2

and d3, whose square equals κ, another quantity that
can be computed from r1, r2, r3, d1, d2, d3, ∆c1, ∆c2

and ∆c3. The linear combination of ∆r1, ∆r2 and ∆r3

is thus approximately equal to ±
√

κ. Two other in-
dependent linear (approximate) equations in ∆r1, ∆r2

and ∆r3 can be obtained from ∆c1
∆c2
∆c3

 ≈ J

 ∆r1
∆r2
∆r3


.

Together these produce a linear system of (approxi-
mate) equations that can be solved for (∆r1,∆r2,∆r3).
Of course, the solution depends of the sign choice in
±
√

κ. Hence there are actually two mathematical so-
lutions for (∆r1,∆r2,∆r3).



Although the computations for the overall track-
ing algorithm are somewhat involved, they are never-
theless direct. Away from the danger cylinder, where
the basic-iteration method is suitable, the number
of arithmetic operations is certainly less than the num-
ber of operations needed to set up and solve the quar-
tic equation that occurs in any of the algebraic meth-
ods. As long as the camera is moving at an acceptably
slow speed, the overall iterative method, with accom-
modation for the danger cylinder, behaves quite well,
as will be seen.

Other iterative methods for solving P3P would
probably also benefit from a similar adjustment when
the camera is near the danger cylinder, partly because
there would always be the possibility of converging to
the wrong solution, near the danger cylinder. These
might include the Gauss-Newton approach used by
(Fung and Wong, 1998), as well as the method in
Appendix A.3 of (Fischler and Bolles, 1981) that re-
peatedly relocates one of the control points and deter-
mines the two possible locations of each of the other
two control points.

Eventually it would be worthwhile having a com-
parison of a wide variety of techniques for P3P track-
ing. However, comparisons with the algebraic meth-
ods are complicated by the need to choose criteria for
selecting a solution from among the various mathe-
matical solutions. As already indicated, the issue of
making such choices is not addressed in the present
article. Iterative techniques avoid this issue, but gen-
erally break down near the danger cylinder, unless
somehow modified, possibly along the lines presented
above.

5.3 Simulations

The P3P-based tracking algorithm, as introduced in
the previous section and detailed in the appendices,
has been implemented using Mathematica R© 1. The
computations involve 64-bit floating point data. Re-
call that the danger cylinder radius is set to one
throughout this article. This remains the case here. In
the simulations, the three algorithm parameters were
set as follows: CLOSE = 0.03, COSTOL = 0.000001 and
JCLIP = 10−50.

The simulations were conducted on three differ-

1A Mathematica notebook with the simulation code and
results is available from the author upon request. Equivalent
C++ code can also be produced upon request.

Figure 5: % lockings based on distance to cylinder

ent control point configurations including one where
these points were equidistant from each other. There
was no significant difference in the results. For the
remainder of this subsection, the specific results will
be presented for the setup using t1 = 4.3, t2 = −4.0
and t3 = −0.3, and hence φ1 = 2.684, φ2 = −2.652,
φ3 = −0.583 (radians). Note that t1 + t2 + t3 = 0 as
required (see Subsection 5.1).

The simulations involved repeatedly randomly
generating a current estimate (x,y,z) for the camera’s
position, referred to as the “previously estimated posi-
tion,” within a distance of 0.04 of the danger cylinder.
Notice that the condition |1−

√
x2 + y2| > CLOSE in

the algorithm was usually false. The simulated cam-
era was then randomly placed at another point, also
within a distance of 0.04 of the danger cylinder.

The new camera position was always selected to
be randomly within a distance 0.1 (10% of danger
cylinder radius) of the previously estimated position.
The two positions were also chosen so that their dis-
tances to the plane containing the control points were
randomly between 1 and 4. Once the points were cho-
sen, a couple iterations of the algorithm’s loop (see
Appendix A) were executed, with the algorithm ini-
tially in the unlocked condition. This random exercise
was repeated 500,000 times. The resulting data were
then analyzed.

Figure 5 shows the percentage of times that the al-
gorithm decided to lock onto the danger cylinder, as
a function of the distance of the actual camera posi-
tion to the danger cylinder. However, it only involves
the cases for which the camera’s previously estimated
position was within a distance of 0.03 from the dan-
ger cylinder, making the condition |1−

√
x2 + y2| >

CLOSE false. This means there was a chance of lock-
ing onto the cylinder, and this decision was made
based on the cosine values.



Figure 6: Average errors in unlocked cases

Figure 7: Average errors after two iterations

5.4 Error Results

Figures 6 though 9 show average errors between the
newly computed estimate of the camera’s position and
its actual new position, after applying one or two it-
erations of the new algorithm in Appendix A. Each
figure shows this error as a function of both the previ-
ously estimated position and the new camera position.

Figure 6 shows the situation after a single iteration
and deals only with the case when the iteration did not
cause the algorithm to become locked onto the danger
cylinder. We see that the errors were quite large when
the previous estimates were too close to the danger
cylinder. To help control these errors, the value of
COSTOL could be increased, as discussed below.

Figure 7 shows what happened in the same situa-
tion when, after the first iteration, the camera stopped
moving and a second iteration of the algorithm was
applied. Clearly there was improvement, but substan-
tial errors remained when the position estimation be-
gan too close to the danger cylinder.

Figure 8 is similar to Figure 6, but it reflects the
situation where the iteration caused the algorithm to
transition from the unlocked state to the locked state.
(Notice that the vertical axes for Figures 8 and 9
are scaled differently then those of Figures 6 and 7.)
Since the newly estimated positions were always on

Figure 8: Average errors in locked cases

Figure 9: Average errors after leaving cylinder

the danger cylinder in this case, it is not surprising
that the error grew as a function of the distance of the
actual new camera position to the danger cylinder.

Figure 9 reflects what happened, after the locked
situation in Figure 8, when the camera was suddenly
moved away from the danger cylinder, precipitat-
ing the need to unlock and move the estimated po-
sition off of the danger cylinder. To effect this, the
exit-cylinder method was used to find two points
near the estimated point on the danger cylinder.

From these two points, the one that was closer to
the actual camera position was selected. This selec-
tion is not realistic in practice since the actual camera
position is unknown in a real-world situation. How-
ever, as already discussed, solution selection contin-
ues to be a thorny issue common to P3P methods.
This article is not focused on this important issue.
Figure 9 at least shows that when the selection be-
tween the two options here is correctly made, the re-
sults can be highly satisfactory.

Increasing the value of COSTOL makes it more
likely that locking onto the danger cylinder will occur.
When COSTOL was set to 0.0005 instead of 0.000001,
the likelihood of locking went up to 88% when the
camera was within a distance 0.01 of the danger
cylinder, while the average distance error when this
happened was 0.014. When the camera-to-danger-



cylinder distance was between 0.03 and 0.04, the like-
lihood of locking was 57%, and the average distance
error when this happened was 0.075. Deciding when
to lock and how to compute a point on the cylinder
are both areas of future study that could significantly
reduce errors.

Although there is not much data presented here
in the |1−

√
x2 + y2|> CLOSE case, the basic method

(Appendix B) performs quite well in the tested setups.
The trend seen in Figure 6, as the previously estimated
position gets further from the danger cylinder, contin-
ued further out, with the average errors continuing to
drop off. The collective data analysis reveals that over
a broad range of distances from the danger cylinder
and a broad range of distances from the control points,
usable position estimations can be expected from the
overall algorithm when the camera is allowed to move
up to ten percent of the danger cylinder radius per it-
eration.

Grunert’s algebraic method was also imple-
mented, as specified in his original paper (Grunert,
1841). A very simple criterion was used to select from
among the multiple mathematical solutions produced:
the one closest to the previously estimated position
was always selected. In general, this worked well, and
outperformed the basic iterative method. However,
as expected, Grunert’s method also suffered signifi-
cantly near the danger cylinder. Therefore, an altered
version of this method was also produced, one that
implemented locking onto the danger cylinder under
the same nearness conditions that were employed in
the altered version of the iteration method. Near the
danger cylinder, the average distance error in tracking
the correct solution improved with the addition of this
locking mechanism.

Experiments were conducted on the two versions
of Grunert’s method. The parameters were the same
as in the earlier iterative method experiments, except
that the camera movement was kept within a distance
of 0.5 of the previously estimated position. When
the previously estimated camera position was within
0.01 of the danger cylinder, and the new camera posi-
tion was within 0.02 of the danger cylinder, Grunert’s
method without locking had an average error of 0.04,
while the locking mechanism reduced this error to
0.01. It should be noted though that the more im-
portant potential benefit of adding a “locking onto the
danger cylinder” feature is the same for all P3P meth-
ods: it can allow for the postponement of tricky deci-

sion making until the camera has moved sufficiently
far away from the danger cylinder.

5.5 Timing Results

The addition of the lock-onto-cylinder and
exit-cylinder methods to the basic method cer-
tainly does create a more complicated algorithm. But
as can be seen in the figures, this results in a much
improved algorithm, in the vicinity of the danger
cylinder. Additionally, the cost in terms of compu-
tation time is not too bad. Glancing at the appen-
dices reveals that the number of computations in-
volved in using the lock-onto-cylinder method is
not worse than about two or three times the num-
ber of computations involved in the using the basic
method. The number of computations involved in the
exit-cylinder method is somewhat worse, by a fac-
tor of about two.

When the Mathematica code was compiled (in-
stead of interpreted), it became possible to conduct
accurate timing experiments, on a 2.4GHz MacBook
Pro. The results were quite encouraging, especially in
light of the somewhat complicated calculations.

Attention was paid to the overhead time involved
in making calls to the (completely) compiled code for
the overall algorithm. This time was subtracted off
measured times for single iteration executions. Thus
the numbers reported here are the average CPU times
for executing a single iteration of the algorithm, and
only this code. The averages were based on 5000
carefully examined trials.

When one iteration was used to update the po-
sition estimate, beginning in the unlocked state and
with |1−

√
x2 + y2| > CLOSE, and hence remaining

in the unlocked state, the average execution time was
22.48 microseconds. This would be essentially the
same time required for just using the basic update
method, without testing for danger cylinder nearness,
since nothing else was involved in this case except
this brief test.

There is of course another case in which algo-
rithm remains in the unlocked state, as follows. When
|1−

√
x2 + y2| ≤ CLOSE, a point on the cylinder is

computed using the lock-onto-cylinder method.
But if this point yields a poor cosines match with the
measured cosines, then this point is rejected, and the
algorithm invokes the basic method to update the po-
sition estimate, and remains unlocked. All of this re-
quired, on average, 47.19 microseconds.



The case where an iteration caused a transition
from the unlocked state to the locked state was quite
surprising. This required failing the |1−

√
x2 + y2|>

CLOSE test, finding the point on the cylinder, and then
verifying that it is a good cosines match, and so lock-
ing onto it. This took only 23.36 microseconds, on
average.

The case where a transition occurred from the
locked state to the unlocked state required 93.89 mi-
croseconds, on average. In this case, a new point on
the cylinder needed to be calculated, which then must
have failed to be a good cosines match, causing the
exit-cylinder method to be invoked. Hopefully
some way will eventually be discovered to improve
this time, which is more than four times as long as
the basic-iteration time. Still, the time penalty
here needs to be considered against the likelihood of
an error when using the basic iterative method, or this
likelihood and/or time penalty for other methods.

Grunert’s method, when compiled in Mathemat-
ica, took quite a long time to execute, nearly two mil-
liseconds. This was so regardless of whether Solve or
NSolve was used to solve the quartic equation. How-
ever, one of the referees of this paper was able solve
the quartic equation and thence solve (1), using Mat-
lab on a standard MacBook, in 74 microseconds. This
of course is much more in line with the times indi-
cated above for the iterative method.

6 CONCLUSION

Several results in plane geometry were presented.
These were used as cornerstones for the principal re-
sult of this article, which is a theorem in solid geom-
etry. The theorem was used to reformulate the classic
P3P problem, by producing a very different system of
equations, with a very explicit connection to the dan-
ger cylinder.

This new framework was then used to enhance the
behavior near the danger cylinder of a simple iter-
ative technique for finding approximate solutions to
P3P. This enhancement involved the addition of a new
“lock onto cylinder” technique whenever the camera
is detected to be sufficiently close to the danger cylin-
der. This technique can also be adapted to other P3P
methods, to better accommodate the inherent unpre-
dictability caused by being in the proximity of the
danger cylinder.

Further work should be done to fine-tune parame-
ters and make other helpful adjustments to the locking
technique. There is reason to hope that simpler for-
mulas and improved performance will result. There is
also the expectation that the new framework for P3P
will lead to further useful developments in the under-
standing of this problem near the danger cylinder, re-
sulting in other useful applications for camera track-
ing.
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APPENDICES

A Iterative Algorithm

The following is pseudocode for the camera track-
ing algorithm introduced in Subsection 5.2. Prior to
tracking, the values t j,x j,y j and d j ( j = 1,2,3) for
the control points are obtained (with t1 + t2 + t3 = 0),
and the values tπ = t1t2t3, tσ = t2

1 + t2
2 + t2

3 and ι =

2(x1y2 + x2y3 + x3y1− x2y1− x3y2− x1y3) are calcu-
lated.

An estimate (x,y,z) of the camera’s position is
maintained and updated with each iteration of the
following loop. Along with this, corresponding dis-
tances to the control points (r1,r2,r3), as in sys-
tem (2), and matching cosines, as in system (1), are

also maintained and updated. Each iteration also en-
tails using up-to-date camera images and the cosines
ĉ1, ĉ2, ĉ3 implied by these images.

Set LOCKED = false.
Repeat (while tracking):

Measure cosines ĉ1, ĉ2, ĉ3 for new camera
position.

If not LOCKED and |1−
√

x2 + y2|> CLOSE
then

Use basic-iteration method to set
estimated camera position (x,y,z) by
changing it to returned value (x′,y′,z′).

Likewise set r1,r2,r3,c1,c2,c3 (distances, cosines).
else

Use lock-onto-cylinder method to find
a point (x′,y′,z′) on the danger cylinder
close to previously estimated position (x,y,z).

Also obtain corresponding r′1,r
′
2,r
′
3,c
′
1,c
′
2,c
′
3.

If (c′1− ĉ1)
2 +(c′2− ĉ2)

2 +(c′3− ĉ3)
2 > COSTOL

then
If LOCKED
then

Use exit-cylinder method to set
estimated camera position (x,y,z) by
changing it to returned value (x′,y′,z′).

Likewise set r1,r2,r3,c1,c2,c3.
else

Use basic-iteration method to set
estimated camera position (x,y,z) by
changing it to returned value (x′,y′,z′).

Likewise set r1,r2,r3,c1,c2,c3.
End-If
Set LOCKED = false.

else
Set (x,y,z) to (x′,y′,z′), and likewise set

r1,r2,r3,c1,c2,c3.
Set LOCKED = true

End-If
End-If

End-Repeat

The basic-iteration method is detailed in Ap-
pendix B. The lock-onto-cylinder method is de-
tailed in Appendix C. These methods are also dis-
cussed in Section 5.2. The exit-cylinder method is
outlined briefly in Section 5.2, and will be explained
in more detail elsewhere. Details can also be found in
the available Mathematica and C++ source code.

B Basic-Iteration Method

Input: control points data (d1,d2,d3,x1,x2,x3,y1,y2,y3, ι),
previously estimated position and distance data
(x,y,z,r1,r2,r3), and currently measured cosine data
(ĉ1, ĉ2, ĉ3). (See Appendix A.)

Output: updated estimated position, distance and matching
cosine data (x′,y′,z′,r′1,r

′
2,r
′
3,c
′
1,c
′
2,c
′
3).



� Set R j = r2
j and D j = d2

j for j = 1,2,3.

� Set J = D1D2D3 − D1R2
1 − D2R2

2 − D3R2
3 + (D1 +

D2 −D3)R1R2 + (D2 + D3 −D1)R2R3 + (D3 + D1 −
D2)R3R1. However, if |J| < JCLIP, then reset J to
equal sign(J) JCLIP.

� Set ∆0r3 =
1
2 r3[D1D2D3−D3(D1+D2)R3+D1(D2−

D3)R1 + D2(D1 − D3)R2 + D3R2
3 − D1R2

1 − D2R2
2 +

(D3−D1−D2)(R3R1 +R3R2− 3R1R2) +R3R1(R3 +
R1) +R3R2(R3 +R2) +R1R2(R1 +R2)− 6R1R2R3] +
r2(D3−R1 +R2)R3(D2 +R1−R3)ĉ1 + r1(D3 +R1−
R2)R3(D1 +R2−R3)ĉ2− r1r2r3(D2 +R1−R3)(D1 +
R2−R3)ĉ3, and similarly for ∆0r1 and ∆0r2 (by cycling
subscripts).

� Set r′j = r j +∆0r j/J and R j = r2
j for j = 1,2,3.

� Set x′ = [(x2
3+y1y2)(y1−y2)+(x2

1+y2y3)(y2−y3)+

(x2
2+y3y1)(y3−y1)+(y3−y2)R′1+(y1−y3)R′2+(y2−

y1)R′3 ]/ ι.

� Set y′ = [(y2
3+x1x2)(x2−x1)+(y2

1+x2x3)(x3−x2)+

(y2
2+x3x1)(x1−x3)+(x2−x3)R′1+(x3−x1)R′2+(x1−

x2)R′3 ]/ ι.

� Set Z′ = 1
3 [R
′
1+R′2+R′3−x2

1−x2
2−x2

3−y2
1−y2

2−y2
3+

2x′(x1 + x2 + x3)+2y′(y1 + y2 + y3))− (x′2 + y′2) ].

� Set z′ =
√

Z′.

� Compute cosine data c′1,c
′
2,c
′
3 corresponding to

r′1,r
′
2,r
′
3.

C Lock-Onto-Cylinder Method

Input: control points data (d1,d2,d3,x1,x2,x3,
y1,y2,y3, tπ, tσ), and currently measured cosine data
(ĉ1, ĉ2, ĉ3). (See Appendix A.)

Output: updated estimated position, distance and matching
cosine data (x′,y′,z′,r′1,r

′
2,r
′
3,c
′
1,c
′
2,c
′
3).

� Set D j = d2
j , Ĉ j = ĉ2

j and Ŝ j = 1−Ĉ j for j = 1,2,3.

� Set η = 1−Ĉ1−Ĉ2−Ĉ3 +2ĉ1ĉ2ĉ3.

� Set µ = 4[ (t1 − t2)(t1 − t3)(t2 + t3 − 2t1) Ŝ1 /(1 +

t2
1 )+(t2− t3)(t2− t1)(t3 + t1−2t2) Ŝ2 /(1+ t2

2 )+(t3−
t1)(t3− t2)(t1 + t2−2t3) Ŝ3 /(1+ t2

3 ) ] / (3η2).

� Set ν= 4[ (t1−t2)(t1−t3)(t2
2 +t2

3−t1t2−t1t3) Ŝ1 /(1+
t2
1 ) + (t2 − t3)(t2 − t1)(t2

3 + t2
1 − t2t3 − t2t1) Ŝ2 /(1 +

t2
2 ) + (t3 − t1)(t3 − t2)(t2

1 + t2
2 − t3t1 − t3t2) Ŝ3 /(1 +

t2
3 ) ] / (tσ η2).

� Set t ′ = [ 2ν3tπ − ν2(µ(tσ + 2) + 8tπ(1 − tσ)) +
8µ2tπ(tσ−3)+3µ3(tσ+2)−32tπ(36t2

π +t2
σ)−4µ(2t2

σ+

t3
σ +4t2

π(tσ +30))+ν(10µ2tπ +8tπ(4(9t2
π − tσ)+ t2

σ)−
4µ(t2

σ + 2(tσ − 14t2
π))) ] / [ 8µ3tπ − 2ν3(tσ + 2) +

48µtπ(18 + 4t2
π + 11tσ + t2

σ) − 4ν2(t2
π + 6tσ + 3t2

σ) +

µ2(15t2
σ+4(27+20t2

π +21tσ))−16(2t3
σ+t4

σ+4t2
π(t

2
σ−

3(9+4tσ)))−ν(6µ2(2+ tσ)+84µtπ(2+ tσ)+8(6t2
σ +

3t3
σ +4t2

π(15+8tσ))) ]

� Set x′ = (1− t ′2)/(1+ t ′2) and y′ = 2t ′/(1+ t ′2).

� Set a j = x′− x j and b j = y′− y j for j = 1,2,3.

� Set Z′ = [(2a2
1 + a2

2 + a2
3 + 2b2

1 + b2
2 + b2

3 − D2 −
D3)(a2

2−a2
3+b2

2−b2
3+D2−D3)Ĉ1−(a2

1+2a2
2+a2

3+

b2
1 + 2b2

2 + b2
3 −D1 −D3)(a2

1 − a2
3 + b2

1 − b2
3 + D1 −

D3)Ĉ2 + 4(a2
1 − a2

2 + b2
1 − b2

2)(a
2
3 + b2

3)Ĉ1Ĉ2 + (a2
1 +

a2
2 + 2a2

3 + b2
1 + b2

2 + 2b2
3 −D1 −D2)(a2

1 − a2
2 + b2

1 −
b2

2+D1−D2)Ĉ3−4(a2
2+b2

2)(a
2
1−a2

3+b2
1−b2

3)Ĉ1Ĉ3+

4(a2
1+b2

1)(a
2
2−a2

3+b2
2−b2

3)Ĉ2Ĉ3 ] / [4(a2
2−a2

3+b2
2−

b2
3 +D2−D3)Ĉ1− (a2

1−a2
3 +b2

1−b2
3 +D1−D3)Ĉ2 +

(a2
1 − a2

2 + b2
1 − b2

2)Ĉ1Ĉ2 + (a2
1 − a2

2 + b2
1 − b2

2 +D1 −
D2)Ĉ3 − (a2

1 − a2
3 + b2

1 − b2
3)Ĉ1Ĉ3 + (a2

2 − a2
3 + b2

2 −
b2

3)Ĉ2Ĉ3 ].

� Set z′ =
√

Z′.

� Compute distance data r′1,r
′
2,r
′
3 corresponding to point

(x′,y′,z′).

� Compute cosine data c′1,c
′
2,c
′
3 corresponding to

r′1,r
′
2,r
′
3.


