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The distribution of the solutions to the Perspective 3-Point Problem (P3P) has been studied for a few decades,

and some understanding of this issue has emerged. However, the present article is the first to comprehensively
describe, for a given location p in space, the number of other points that solve the same P3P setup that

p solves, and where to find these related points. A dynamic approach is employed to solve this problem.

The related points are restricted to certain regions in space, defined by certain “basic” toroids, and by a

surface called the “companion surface to the danger cylinder.” The nature of this surface is explored in detail,
along with its intersections with the basic toroids, and the pairwise intersection of these toroids. The cubic
polynomial introduced by Finsterwalder in his analysis of P3P is also related to the companion surface.

1 INTRODUCTION

The Perspective 3-Point Problem, whose purpose
is to determine the pose of an idealized pinhole cam-
era, based only on an image showing three known
control points in space, is a rather old problem. It
has long been understood that although the informa-
tion provided as input to the problem is insufficient to
exactly determine the location of the camera, it does
limit the possibilities to at most four locations. How-
ever, until recently, it has been a mystery how these
points are geometrically related.

In (Gao et al., 2003), a significant step was taken
in gaining an understanding of these matters, by clas-
sifying the various possible solutions to the system
of equations introduced in (Grunert, 1841). Another
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such algebraic approach to the issue was reported in
(Faugere et al., 2008). Yet these works did not reveal
the significant geometric aspects inherent in the P3P
problem that have steadily emerged in the last couple
decades, and that have proven to be essential in gain-
ing a deeper understanding of P3P.

The so-called danger cylinder is a very important
surface, and while this has been widely known, for
some time, certain key facts concerning it have only
recently been firmly established. See (Rieck, 2014)
and (Zhang and Hu, 2006). It has also become clear
that certain special toroids aid in understanding the
number and relative positions of the various solution
points to the P3P problem. See (Sun and Wang, 2010)
and (Wang, et al, 2, 2019).

Quite recently, another important surface has been
revealed, and shown to also play a crucial role in un-
derstand the number of solutions and their locations.
In (Rieck, 2018), this surface was called the “del-
toidal surface,” but in (Wang, et al, 1, 2019), it was



called the companion surface to the danger cylinder
(CSDC). We will here adopt this latter terminology,
as it stresses an important relationship to the danger
cylinder.

Together, these various surfaces act to partition
all of real three-dimensional space into various re-
gions. One of the primary goals of this paper is to pre-
cisely determine the number of solutions associated
with each region. This goal is very much achieved,
in Section 5, via a series of lemmas, culminating in
Theorem 3, which counts the number of solutions for
various cases.

One aspect of our analysis that is rather novel is
the reliance on particles, that is, continuously mov-
ing points. We introduce, in Section 2, the concepts
of weakly related and strongly related particles, as
well as fixed points, and exploit these ideas to pro-
duce a rather complete analysis of the P3P problem.
Strongly related points are simply points that solve the
P3P problem for the same parameter values, so this is
of primary concern.

However, in allowing particles to continuously
move around, and in developing a rigorous mathe-
matical analysis of this, it becomes necessary to per-
mit particles to pass through control points. In doing
so, any strong relationship between particles breaks
down. However, weak relationships are maintained,
which is part of the justification in also focusing on
this relationship.

Section 3 introduces (in this paper) the compan-
ion surface of the danger cylinder, explains its impor-
tance, and investigates many of its properties. Sec-
tion 4 introduces (in this paper) the basic toroids and
double toroids that, together with the CSDC, partition
space for the analysis developed in Section 5. Sec-
tion 4 also discusses the algebraic geometrical notion
of a point blowup and a natural double cover of such
a blowup. The immediate neighborhoods of the con-
trol points are investigated using these tools. Section
6 provides precise formulas that describe the pairwise
intersections of the various important surfaces related
to the P3P problem. Section 7 draws a connection
between the CSDC, repeated solutions to Grunert’s
system of equations, and the discriminant of a cu-
bic polynomial introduced by Finsterwalder, and de-
scribed in (Haralick et al., 1994).

2 STRONGLY AND WEAKLY
RELATED POINTS

As was the practice in (Rieck, 2015) and (Rieck,
2018), the analysis of the P3P problem will be greatly
simplified by making some easily accommodated as-
sumptions that in no way restrict the general utility
of the results. Specifically, it will be assumed that
three-dimensional real space is equipped with three
orthogonal coordinate axes (x,,z), that these are cho-
sen, translated, rotated and scaled together as needed,
so as to cause the three control points to be located on
the unit circle in the xy-plane.

Mathematically, we will be concerned with solu-
tions to the following system of equations, which we
call the extended Grunert system:

53+53—2cosasas3 = (x2—x3)%+ (y2 —y3)°

s3+s7—2cosPs3si = (x3—x1)>+ (y3—y1)?

57453 —2cosysis2 = (x1 —x2)* + (y1 —y2)?

(=21 +(y=y)+2 = 5
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(x—x)?+(y—y)*+2* = 53

ey
Here (x1,y1,0), (x2,y2,0) and (x3,y3,0) are the
known coordinates of the control points, and o, B and
Y are known view angles. The camera’s optical cen-
ter (x,y,z) is unknown, as are the distances s;, sy and
s3 between the optical center and the control points.
The view angles are the angles between the rays from
the optical center that pass through the control points,
taken in pairs. All angles discussed in this paper have
radian values between zero and 7. It will be handy to
let d; denote the distance [ (x; —x3)% 4 (y2 —y3)?]"/2,
and similarly for d, and d5.

In practice, the quantities (x,y,z,s1,52,53) for the
actual optical center of the camera give only one pos-
sible solution to the system, for the corresponding
parameters (x1,y1,X2,y2,%3,y3,0,3,7). Though there
may perhaps be some potential for confusion, we will
often let the notation (x,y,z,s1,52,53) refer to any of
the several solutions to the system (1). Downplaying
the distances sy, 2, 53, the corresponding triple (x,y,z)
will be called a solution point for the system (1).

The subsystem consisting of just the first three
equations of (1) is called the Grunert system. A solu-
tion (s1,s2,s3) to this might involve only positive real
numbers, in which case, it is always possible to ob-
tain a corresponding real solution point (x,y,z) to the



extended system. Solutions of this sort are physically
meaningful, viz. the P3P problem, of course.

However, there is also a physical significance that
can be associated with a solution (s1,s7,s3) involving
only real numbers, at least one of which is negative.
To understand this, imagine, say, that s; > 0, s, > 0,
but s3 < 0. Notice the mathematical fact that if we al-
ter the system of equations by replacing o with T — «,
and replacing B with @ — 3, we find that (sq,s2, |s3])
is a solution to the resulting Grunert system, and that
this involves only positive numbers. If we now ob-
tain a corresponding solution point (x,y,z), then we
might think that of it as being a “solution point” for
the original system, except with the ray between the
optical center and the third control point pointing in
the reverse direction.

Because of the intimate relationship between such
systems, and the importance of this when we later al-
low the optical center to move dynamically around in
space, we will say that a Grunert system of equations
obtained from the original Grunert system, by replac-
ing exactly two of the angles o, B and y with their
supplementary angles T —a, T — B and T —v, is re-
lated to the original Grunert system. Similarly for the
extended Grunert system.

Given two solution points (x,y,z) and (x',y',7) for
the extended Grunert system, using the same param-
eter values, we say that these two points are strongly
related (to each other). More generally, given a solu-
tion point (x,y, z) for an extended Grunert system, and
a point (x',y",7') that is either a solution point for the
same system or for a related system, we will say that
these two points are weakly related (to each other).
Notice that strongly related points are also weakly re-
lated. While the notion of weakly related points may
seem at first to be an unnecessary contrivance, it is
not. Rather, it has a very important theoretical advan-
tage over the notion of strongly related points, con-
cerning the issue of continuity, as we will discover
later.

In Section 5, a dynamic approach to analyzing
P3P will prove to be very helpful. There we will be
interested in continuously moving particles. Clearly
the concepts of weakly and strongly related points can
be immediately extended to provide us with a notion
of weakly and strongly related particles.

Throughout this paper, it will be assumed that
the control point locations (x1,y1,0), (x2,y2,0) and
(x3,y3,0) are fixed. On the other hand, we will, at

times, vary the other three parameters of the extended
Grunert system, namely, the view angles o, 3 and 7.
In fact, it is quite useful to consider the reverse of
solving the extended Grunert system. Consider an
arbitrary point in space (x,y,z) that is not one of the
control points. This point is clearly a solution point to
the extended Grunert system for precisely one choice
of values for the parameters a, B and y. These are
simply the view angle values for this particular point.
The following claims are straightforward to check.

Lemma 1. Given two non-control points p and p' in
space, with corresponding view angles (o.,B,y) and
(o, B',Y), the following are equivalent:

1. p and p' are strongly related (i.e. solution points
for the same extended Grunert system);

2. (a7Ba’Y) = (OC/,B/,’Y),‘

3. (cosa,cosP,cosy) = (cosa,cosP’,cosY);

4. The configuration consisting of the three rays em-
anating from p, in the directions of the control
points, can be rigidly transformed into the cor-

responding configuration of rays emanating from
/

p.
Likewise, the following are equivalent:

1. p and p' are weakly related (i.e. solution points
for the same or related extended Grunert sys-
tems);

2. (o, B,y) and (o ,B',Y) are either equal, or one of
the corresponding pairs of angles are equal, and
each of the other two pairs consists of supplemen-
tary angles;

3. (cos?a, cos? B, cos?, cos a.cos Bcosy) =
(cos> o, cos” B/, cos®y, cos o cos B’ cosY);

4. The configuration consisting of the three lines
through p and a control point, can be rigidly
transformed into the corresponding configuration
of lines through p'.

Henceforth, it will be convenient to let ¢y, ¢; and
c3 denote cosa, cosP and cos?, respectively. As in
(Rieck, 2018), let

N =1-c} —c3—c3+2ci003.

For our purposes, it turns out sometimes to be
quite convenient to identify the xy-plane with the
complex plane, by identifying a point (x,y) with the
complex number { = x+iy. The preferred coordinate



system is easily chosen so that the three control points
€1, Co, and {3 satisfy these simple requirements:

Gl = G2l = 1G] = Gi%Gs = 1.
Accommodating the last of these conditions just
amounts to applying a rotation to the xy-plane (com-
plex plane), which imposes no significant restric-
tion. Letting ¢, denote the signed angle subtended
at the origin, between the positive x-axis and the ray
through the control point (xq,yq), the requirement
that z122z3 = 1 just means that ¢y + ¢ + ¢3 = O,
the convention followed in (Rieck, 2015) and (Rieck,
2018).

Though complex numbers were not used there, it
was essentially shown in (Rieck, 2018) that the ortho-
center of the triangle that has {;, {; and {3 as vertices
isCy = xyg+iyg = {1+ {+ 3. This orthocenter of
this control points triangle plays a vital role in the P3P
problem. A general point (x,y,z) in three-dimensional
real space will be identified with an ordered pair ({,z)
where { = x+1iy.

It is easily seen that each non-control point
(x,y,z) is strongly related to its reflection about the
xy-plane, (x,y,—z). When dealing with the problem
of counting related points (strongly or weakly), and
describing their locations, it is usually convenient to
restrict attention to the upper-half space, consisting
of points (x,y,z) for which z > 0. However, when
studying a smoothly moving particle, moving around
in three-dimensional real space, and asking how its
weakly related particles move around, it becomes
more natural to work in all of the three-dimensional
real space, and, very importantly, to allow particles to
pass through the control points!

3 THE COMPANION SURFACE
TO THE DANGER CYLINDER

Using our setup, the danger cylinder is the sur-
face in 3-dimensional real space given by the equation
x2+y? = 1, oralternatively, {{ = 1. In (Rieck, 2018)
and (Wang, et al, 1, 2019), another surface was intro-
duced and shown to be of great importance in clas-
sifying points according to their number of strongly
related (real) points, i.e. to the number of other real
points that have the same view angles. Following

the practice of the latter article, this surface will be
called the companion surface to the danger cylinder
(CSDC). Actually, CSDC provides a very simple way
to classify points according to their number of weakly
related (real) points, as follows. CSDC partitions the
rest of three-dimensional real space into two parts, an
inside and an outside.

To simplify the discussion, let us focus here only
on the upper-half space, and so assume that z > 0.
Each point outside CSDC has exactly one weak rel-
ative (i.e. weakly related point), which is also out-
side CSDC, and which might be a strong relative
(i.e. strongly related point). Similarly, each point in-
side CSDC has exactly three weak relatives, all inside
CSDC, with the caveat that each point on the dan-
ger cylinder, which is inside CSDC, counts as two
points, due to the well-known phenomenon that these
points correspond to repeated solutions of the Grunert
system. These “counting facts” have been alluded
to previously in (Rieck, 2018) and (Wang, et al, 1,
2019), but they are also presented here, as part of a
far more comprehensive description of P3P solution
points, and their distribution.

To set the stage for some new results, very
straightforward formulas will now be presented for
CSDC that can then be used to show that it indeed
serves the role of separating points in space accord-
ing to their number of weakly related points. The ap-
proach taken here is more direct than those taken in
the past, yet somewhat tedious calculations are still
required.

Recall that we are identifying a point in space
(x,y,z) with an ordered pair ({,z), where { =x+1 y.
Now, for each such point, assign two other complex
numbers as follows:

5 Y (Gt-t

CL:C7H+
N° o=

&) (1-4)

and

G =20+ (¢C-1) (@t —T+Tn) /2
2)

Notice that {; depends only on the parameters of the
Grunert system (x1,y1,X2,¥2,X3,¥3,¢1,c2 and ¢3), and
so is independent of which solution point plays the
role of (x,y,z) here. Indeed, since any two weakly
related points have the same values for ¢2, ¢3, ¢5 and
N2, they must also have the same value for ;..



Also define the following real number (which also
is the same for weakly related points):

D=CG - 4G +E) + 1888 —27. O
The quantity D is actually seen to be the same as that
given in (Rieck, 2018)[Theorem 2], up to a constant
factor, though the use of {; here makes its expression
more compact. There, it is made clear that the van-
ishing of D is necessary and sufficient in order for
Grunert’s system, i.e. the first three equations in (1),
to have a repeated solution. These formulas also es-
sentially agree with (Wang, et al, 1, 2019)[Equation
(25)].

This fact is then easily obtained: The ex-
tended Grunert system (1), with given parameters
X1,¥1,%X2,Y2,X3,¥3,C1,¢2 and c3, has a repeated solu-
tion point if and only if D = 0. Later, in Section 7,
this fact will be reestablished as Theorem 7, using a
substantially more direct approach than was used in
(Rieck, 2018).

(Rieck, 2018)[Theorem 1] is subsumed in the
following result, which will shortly be proven here,
in a far more direct manner, using complex number
theory.

Theorem 1. The complex numbers {;, and {}, defined
in (2), are equal.

In all that follows, ¢ denotes the unit circle, and
9 denotes the standard deltoid curve, both in the
complex plane. These are defined respectively by
¢C=1and ’C — 4+ +18LC —27 = 0.
Also, Z = 72 henceforth.

The equation D = 0 means that the complex num-
ber {; is on the standard deltoid curve ©. We will
see that this equation is satisfied when (x,y,z) is on
the danger cylinder, and also when it is on another
connected surface that will become our definition of
CSDC. We will come to see that it is CSDC, more so
than the danger cylinder, that is crucial in separating
the points in space into very different types, viz. the
P3P problem.

Although it is not needed for the goals set out in
this paper, it is perhaps worth briefly noting that the
projection of a curve in space having a constant value
of &, (=), onto the xy-plane, is a cubic curve that
passes through the three control points and the ortho-
center, and that has asymptotes that are parallel to the

altitudes of the control points triangle. This is left as
an exercise for the interested reader.

In order to prove Theorem 1, a somewhat tedious,
but somewhat interesting, algebraic fact, i.e. the next
lemma, will be used. To prove it, one can simply
expand, expressing each side as a polynomial in G
and Z, and then compare the coefficients of powers
of ¢ times powers Z. Admittedly, this is a bit tedious.
Algebraic manipulation software can be used to
verify the equation much faster.

Lemma 2. For any complex numbers (1, {p, (3, (, ©
and Z, the following identity holds:

Ci(&—8)[Z+(E-81)68E (Lio—1)]
[AZ+C(C+Glio -6 — )2 +
GG =8 [Z+(E—8) 8381 (Lo —1)]
[4Z+G(C+ Lo -G —Ci)?] +
GG —8)[Z+(E-8) G (Go—1)]
424+ GC+ G- - 6)?] =

—(L—-8) (G -8 —G)-
{ (@ —2000G0-00G-GLI—-0i0h)Z
+ 080G - (G +6+8)-0iGGo
+00G+6GG+08](Co—1) }.

To continue towards a proof of Theorem
1, it will help to introduce additional nota-
tion. Recall that d; denotes the triangle side
length [(x2 — x3)> + (y2 — y3)*]"/%, and simi-
larly for dp and d;. Let 0y, 6, and 03 denote
the view angles o, P and 7y, respectively. In
(Rieck, 2014)[Lemma 2], it was proven that
n = d?d3 d3z/(4szs§s§) Now, sin’@; = 1 —¢?

(2s2s3 +2d}s5 + 2d}s3 — df — 55 — 53)/(4s3s3),
which is an 1mmediate consequence of c¢; =
(s3 + 53 —d?)/(2s2s3). Similarly for sin’6, and
sin”@3. The claim being made in Theorem 1 is
therefore the same as the claim made in the next
lemma.

Lemma 3. For the control points €y, {; and (3, the
optical center (C,z), and the quantities Cy, dy, da, d3,
s1, s2 and s3 based on these, the following equation
holds:



(G+0 -8 —G) st
(2s253 +2d3s3 +2d3s3

(Cz‘*‘Cz -G —Cl) 53
(25353 +2d353 + 2d3s? —

(G+G-0- Cz)s3
(25355 +2d3s3 4+ 2d3s3 —di — s} —s3) =

—di—s5—53) +

di —s3—s1) +

B d3di { (P —20-Cn)Z +
(€ —Cnl—C+Tm)(CC- 1)}

Proof. We will make repeated use of these facts:
G =1/G, L =1/G, & =1/C and {58 = 1.
By means of these facts, one discovers that
G+0 -0 -0 = (6 —8)(C — &), etcetera.
Likewise, ZS%S% + 2d12s% + desg — df' — sg — sé’ equals
—C1(C — G2 {4Z + Gi [0+ LGl — (& + Cz)] }7
etcetera. So (Cl +8 -8 —G)s? (2s253 + 2d3s3
2dis3 —df =55 —3) = G152 — §3)* (G — Cl)(Cl
Cz){Z + (€ — §)GGGE — DH4Z + § [ +
Ll C— (L +G))%)

Adding this and the other two similar expressions
yields —(& — 83)*(63 — Ci)* (61 — §2)?[(8% — 28 -
Cr) Z+ (67 = Cul—C+Ca) (E0—1)] = =61 Gals (Lo —

03)%(Cs — C1)?(C1 — Q)2 — 20— Tw)Z + (C -
Cul—C+Tm)(LC—1)] = (& — G) (G — G)(G —
C)(G = C)(& —&)(E€ — Q) - 20— Cy)Z +

(& —Cul—C+Cu)(CL—1)] = dfd3d3 { (& —2C -
C)Z+ (@ —Cul—C+Tu)(EC—-1) ).
O

Having proven Lemma 3, we have also proven
Theorem 1 as a consequence. We will next strive to
gain a better understanding of the quantity D.

Lemma 4. Fix a non-control point (C,z). Then
= (EC-1°P/Z",

where P is a polynomial of degree four in Z, having
coefficients that are polynomials in { and Z (or al-
ternatively in x and y). Moreover, when treated as a
polynomial in C, Z and 7 (orin x, y and z), it has de-
gree twelve.

Proof. Let Z; = 2§, = (2 —20)Z + (= CuC —
C+8)(CC—1). Let D=2Z*D =2272 —4Z(Z3 +
73) +187%7,Z; — 27Z*, assuming always that Z is
real-valued. The equation in the statement of the

lemma then amounts to the equation D= (CC—1)2.
Clearly, D can be expressed as a polynomial in ¢, €
and Z, where the highest power of Z that occurs is the
fourth power. Replacing Z with z2, it is also immedi-
ate that as polynomials in , E and z, the polynomial
Z; has degree four, and the polynomial D has degree
sixteen. It remains only to show that ({{—1)? is a
factor of D.

Momentarily, assume that || = 1, and so { =
1/C. Tt can be readily checked that Z; becomes
((2—2¢1Z, Zg becomes ({72 —2()Z, and D van-
ishes. For general {, it follows that {{ — 1 is a factor
of D.

_Also, upon setting { = 1/ again, we see that
(BD/aZL, BQ/BZL) becomes (—473({ + ) (=
C+ 1’07, —4ZC+ 1) -+ 1)°C*), and
(E)ZL/BC E)ZL/BC) becomes ({3 — {y %+ Lyl —22—

, —C+CuC—Cy+ (2Z41)C"). The dot product
of these two vectors is zero, telling us that 9D /9L be-
comes zero. This then guarantees that ({{ —1)% is a
factor of D.

To be a bit more rigorous perhaps, let ® be a new
indeterminate, and let g € Q(,Z)[w] (a polynomial
in ® with coefficients in the rational function field
Q(&,Z)) be defined by replacing each of the occur-
rences of { in D with . Since g(1/{) = ¢'(1/¢) =
(0— 1/£)? must be a factor of the polynomial g in the
polynomial ring Q({,Z)[w], and so ({® — 1)? must
be a factor of the same polynomial in the polynomial
ring Q[¢,®,Z], and so ({€ — 1) must divide D.

O

By means of a series of preliminary lemmas, found in
the appendix, the following result can be established:

Lemma 5. Let P be the polynomial introduced in
Lemma 4. Consider its expression as a polynomial
in real variables x, y and Z (rather than (, E and
Z), with real coefficients. This real polynomial is
irreducible. That is, it is irreducible as an element of
the polynomial ring R[x,y, Z].

The important role played by the polynomial
P, and the surface defined by P = 0, will now be
investigated.

Lemma 6. The following are equivalent for a point
p € R3, not on the unit circle ¢:



1. p is either on the danger cylinder (and so a dou-
ble solution point for the extended Grunert sys-
tem), or is weakly related to a point on the danger
cylinder;

2. pisonthe surface of R? defined by the polynomial
equation, in x, y and Z (= z%), given by D = 0;

3. p either satisfies the equation x* +y* = 1 or the
polynomial equation P = 0.

Proof. Let DC be the danger cylinder. If p is on DC,
then it is clearly a solution point for the equation D=
0, since {; = {2 — 2 easily makes D zero. But by the
Theorem 1, D can be expressed as a rational function
of cicacs, ¢, ¢3, 3, not involving the coordinates of
p in any other way. Therefore, still assuming that p is
on DC, any point weakly related to it is also a solution
point for the equation D = 0. This is due to the fact
that two points are weakly related if and only if they
have the same values for the four quantities cjcac3,
1, ¢3, ¢} (see Lemma 1). This makes it clear that
item 1 in the lemma implies item 2. The equivalence
of items 2 and 3 is clear from Lemma 4.

It is easily established that there exists some point
in R3, not on DC, that is weakly related to a point on
DC. Since the first point does not satisfy x> +y*> = 1,
but does satisfy D= 0, it must satisfy P = 0. Thus,
P =0 has real solutions. Its algebraic set (solution
surface) § includes all of the points that are weakly
related to points on DC, but not on DC themselves.
By “elimination theory,” the set of points 8’ that are
either on DC or are weakly related to points on DC is
also an algebraic set, i.e. the solution set of a system
of polynomial equations. Now, N8’ # ¢, and § is
irreducible, since P is an irreducible polynomial (see
Lemma 5), so 8 C §'. Therefore, the entire surface
given by P = 0 must consist only of points that are
either on DC or are weakly related to points on DC.
Consequently, item 3 in the lemma implies item 1.

O

The following is a crucial result for determining,
given a point, its number of weakly related points,
and also its number of strongly related points.

Corollary 1. Consider a point p = (x,y,z) € R with
72>0,and D #0. If P > 0, then p is weakly related
to exactly one other point in the upper-half space.
If instead P < 0, then p is weakly related to exactly

Figure 1: CSDC near the xy-plane

three other points in the upper-half space.

Proof. The quantity {; in the current paper is the
same as —1 — R+ Li with £ and R as defined in
(Rieck, 2018). Therefore, D here is the same as D
there, and D here is the same as D there. Theorem 2
there amounts to the claim that the a point p € R? is a
solution point for an extended Grunert system having
a repeated solution if and only if D =0. By Lemma
4, this is so if and only if p is on the danger cylinder,
or on the surface defined by P = 0.

Treat p as a particle now, and consider moving it
continuously in the upper-half space. Since the for-
mula for the danger cylinder in squared in the for-
mula for D = 0, the number of real solutions to the
extended Grunert system does not change when p
crosses the danger cylinder. On the other hand, the ir-
reducible polynomial P only occurs to the first power,
and so when p crosses the surface P = 0, this does
affect the number of real solutions to the extended
Grunert system for which p is a solution point. In
other words, this does affect the number of points that
are weakly related to p.

When P > 0, the Grunert system is found to have
two real solutions (along with two other complex so-
lutions), and so the solution point p has one weak rel-
ative in the upper-half space. But, when P < 0, the
Grunert system has four real solutions, and so the so-
lution point p has three weak relative in the upper-half
space.

O

Note that Proposition 2 in (Wang, et al, 1, 2019)
further supports the corollary. The surface defined by
P =0 is thus critical in determining the number of
weakly related points that a given point has. It is this
surface that we will call the companion surface to the



danger cylinder (CSDC). A point p for which P >0
is outside CSDC, but if instead P < O then it is inside
CSDC.

When the control points triangle is acute, it was
first observed in (Rieck, 2018) that CSDC consists
of an unbounded region that is outside the danger
cylinder, wrapping around the danger cylinder,
and tending towards a deltoid curve as z goes to
infinity, together with a bounded region inside the
danger cylinder. This inside portion consists of three
“humps,” as seen in Figure 1. We close this section
by proving that this portion of CSDC is actually
contained inside the unit sphere, when the control
points triangle is acute.

Theorem 2. Assume that the control points triangle
is acute. Consider a point p = (x,y,z) € R? that
is on CSDC, and also inside the danger cylinder
(x> +y*> < 1). Then x> +y*+ 72> < 1.

Proof. A triangle is acute if and only if its orthocenter
is inside its circumcircle, and so we may assume that
x%, +y12_1 < 1. We are also assuming that x> +y? < 1.
Because we are also assuming that p is on CSDC, it
follows that D = 0 and so the complex number {;
is on the deltoid curve ®. This curve is known to
be rational, and it fact, it is straightforward to see
that the mapping @ — ®> —2® maps the unit circle
¢ bijectively onto the deltoid ®. So {; = &> —2®
for some ®; with oy, ®; = 1. By the formulas (2),
Theorem 1, and the fact that z is real, we see that

N () (SR P )
L= = o —20; (2 +2C
(&)@ -Tul—L+Ln)
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and so
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We need to show that this is positive, thereby
proving the lemma. This will in turn follow from the
assertion that for any complex numbers {, {y and ®
with |{| < 1, |€y| < 1 and |®| = 1, if the quantity

0 —20-CC+C+ 0y 4)
2 —20-{%2+2¢

is real, then it is positive. This will now be estab-
lished. Using the fact that ® = 1/, the above for-
mula can be rewritten as

2+ (Eut-C-Cyo-o’
24+ (2 -20)0—w?

and its conjugate (presumed to be equal) can be
rewritten as

L+ (48 —Cu Do? —20°
1+ (20-T)e? — 203

Let’s begin examining quantity (5) by first asking
if it can be zero. If it is zero, then 2 + ({u¢ — € —
r)o— o =14+ 4+ Ly — wlw® —20° =0.
If we eliminate E from these, we find that

¢ = 172§7Hm+(§H+§12)w272w3+§7Hm4.
Culn-1)0?

We are assuming here that |{| < 1, so |I — 2Ly o+
Cr+T)e? —20° + Lro'| < [Culq — 1. How-
ever, [1 —20p o+ Ly +C7H2)(02 —20° + o] - [1 -
Wpo ' +Cut+p o203 +lyo Y] — (Culu -
)? = o' —2+8h0) - (02 -Cpo ' +ino—
®?)2.  On the right side of this equation, the first
factor is negative, since |{y| < 1 and |0 = 1, and
the rest is the square of a purely imaginary num-
ber, and so also negative. The right side as a whole
is therefore positive. This leads us to conclude that
1280 0+ (G +-8n ) 0?20+ T 0] > [l 1.
We have a contradiction here, and so conclude that
quantity (4) cannot be zero.

Now, (4) is always defined since its denominator
is never zero, since ®* — 2® € D, but 2 — 2{ ¢ D,
since ® € €, but { ¢ € and { ¢ ©. (The preimage of
© under this mapping { — {2 — 2 is €UD.) Now,
the quantity (4) equals one, which is positive, when
€ = Cy. By continuity, quantity (4) is never negative.

O

4 TOROIDS AND BLOWUPS

A toroid, in the sense that will be used here, is a
circular arc, rotated in three-dimensional space, about
the line through its endpoints. The only toroids that
are of concern in the P3P problem are those generated
by circular arcs whose endpoints are two of the three
control points. Suppose for a moment that the end-
points are B and C. By the Inscribed Angle Theorem,



all of the points p on the circular are such that the an-
gle subtended at p by the rays to B and to C, are equal.
That is, these points have the same view angle o.. But
clearly, this is, more generally, still the case for all of
the points on the toroid generated by the arc; all of
these points have the same view angle o.. Moreover,
a moment’s reflection makes it clear that the points
on this toroid are the only points in three-dimensional
space whose first view angle equals this o.

Henceforth, this toroid is denoted Toroid,y, where
the label “o” lets us know that we are referring to the
first view angle, i.e. the angle, at a given point, sub-
tended by the rays to B and C. Similarly, Toroidg is
the toroid consisting of points whose second view an-
gle (the angle subtended by rays to A and C) have the
same value . Likewise, Toroidy corresponds to the
third view angle. Notice that for specified values of
o, B and v, the points that have these three view an-
gles (if any) are the points that lie on the intersection
of the three toroids Toroidy, ToroidB and Toroidy.

Given a value for o, besides Toroid, there is
another toroid of interest, namely the toroid corre-
sponding to a first view angle of ® — o. This is
obtained by taking the circular arc used to generate
Toroidy, and replacing it with the circular arc with
endpoints B and C, whose union with the original cir-
cular arc forms a circle (through B and C). This is
also clear from the Inscribed Angle Theorem. De-
note this new toroid, Toroidy_y. Similarly, we have
Toroidy_pg and Toroidy_. The union of Toroidy, and
Toroidy_g is clearly obtained by rotating and entire
circle through B and C, about the line through B and
C. We will denote this DoubleToroid,, and refer to it
as a double toroid. Similarly for DoubleToroidg and
DoubleToroid,.

Very important special cases of toroids and double
toroids occur when oo = A or 3 = B or y = C, where
A, B and C implicitly mean the interior angles of the
control points triangle ABC. When o = A, the toroid
Toroidy will also be denoted Toroidy. It is one of
the three basic toroids. The other two basic toroids
are of course Toroidg when B = B, and Toroidy when
Y= C, and they are denoted Toroidg and Toroidc,
respectively.  Similarly, we have the three basic
double toroids: DoubleToroidy, DoubleToroidg
and DoubleToroidc. There are also three other
toroids of special interest, Toroidy_4, Toroid;_p and
Toroidy_c, whose meaning should now be clear.

Lemma 7. The following are equivalent formulas for
the basic double toroid DoubleToroidy:

1 4202+ — (o 4ys)xy—x2—y — 1] 22
+ (2 = 1) [ +y* —2(x2 +x3)x
—2(y24y3)y +2x2x3 4+ 2y2y3 — 1] = 0;

2. 2[00 G+G)E—(
+(EC-1)[CC—(C+&3)

+(1+0G+885)] = o.

Similar formulas are of course obtained for
DoubleToroidg and DoubleToroidc by cycling
the indices.

G+ 83)C—2]2
C—(L+8)¢

Proof. The double toroid DoubleToroidy
can be described as the collection of points
that satisfy cos’a = cos’A. By the Law of
Cosines, this equation can be expressed as
45353 cos’A = (s3 + 53 —d})®.  But, cos’A =
1 —sin®A = 1—d} /4, & = (x2 —x3)* + (y2 — 3)?
and 57 = (x —x1)? + (y — y1)? +z°. The first formula
stated in the theorem follows quickly from these
facts, and the special properties of x1,x,x3,y1,y2 and
y3 that can be deduced from the restrictions placed
on {;, & and {3, and which are listed in (Rieck,
2018)[Lemma 1]. The second formula follows
immediately from the first formula upon setting

x;=(§;+¢;)/2andy; = (¢ —C;)/2i, for j=1,2,3.
O

The basic toroids, Toroidys, Toroidg and Toroidc,
and their related toroids Toroidy_4, Toroidy_g and
Toroidy_c, are particularly important for understand-
ing the locations of weakly related points, including
strongly related points.  This will be carefully
explored in the next section. However, the stage
for this will be set here, by introducing a couple
more concepts, and presenting a couple more lemmas.

Lemma 8. When A < a <t —A, DoubleToroid,, in-
tersects the unit sphere in two circles that are reflec-
tions of each other about the xy-plane. Moreover,
Toroidy, intersects the unit sphere in two circular arcs
that are reflections of each other about the xy-plane.
Similarly for the intersection of Toroidy_y and the
unit sphere.

Additionally, when o < A, Toroidy does not
extend inside the unit sphere, and when o > T — A,



Toroidy does not extend outside the unit sphere. In
all of this, A and o. can be replace with B and B, or
with C and .

Proof. Let M be the midpoint of the segment BC. Let
P be plane through M that is perpendicular to BC.
This intersects the unit sphere in a great circle §. Any
point p on G determines a unique circle € containing
B, C and p. By the Inscribed Angle Theorem, all the
point along the arc A of € from B to C, containing p,
have the same first view angle as p. Letting p move
along G from one point in the xy-plane to the antipo-
dal point in the xy plane, this first view angle clearly
changes continuously from A to T — A, and so some-
where is equal to a (fixed value in the lemma).

The arc A for this p is clearly part of the intersec-
tion of Toroidy and the unit sphere. But the same may
be said about the reflection of A about the xy-axis. As
p is allowed to vary, the entire unit sphere is swept out
by the circular arc A, so it is clear that no other points
lie on the intersection of Toroidy and the unit sphere.
It is also immediately clear that if p is such that the
points of A have first view angle o, then the points
on the arc of € from B to C, not containing p, have
first view angle T — @, as do the reflections of this arc
about the xy-plane. The first paragraph of the lemma
now follows.

To prove the rest, suppose that & < A. A portion of
Toroidy in the xy-plane is an arc between B and C that
is outside the unit circle, apart from B and C. As this
is rotated about the line BC, this arc cannot come into
further contact with the unit sphere. This is because
the above reasoning establishes that fact that at any
point on the unit sphere, apart from B and C, the first
view angle is between A and T —A. So Toroidy is
outside the unit sphere, apart from B and C. Similarly
for the o0 >  — A case.

O

Henceforth, the control points triangle ABC will
be assumed to be an acute triangle, and so all of the
interior angles A, B and C are less that /2. The pair
of toroids Toroidy and Toroidy_y4, partitions three-
dimensional space (with these toroids removed) into
three parts: outside Toroidy, between Toroids and
Toroidy_4, and inside Toroidy_4.

The digits “0”, “1”, “2” will be used (respectively)
to distinguish between these three portions of space.
Another digit (also “0”, “1” or “2”) will be similarly
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Figure 2: Upper half of DoubleBlowup 4
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Figure 3: Top-down view of same DoubleBlowup 4

used to represent partitioning space based on Toroidp
and Toroidy_p. Again, one final digit will be used
to represent partitioning space based on Toroidc and
Toroidy_c. In this way, we will speak of a foroidal
region abc where each of a, b, ¢ is 0, 1 or 2, and
abc will be called a region descriptor. Here a indi-
cates one of three portions of space based on Toroidy
and Toroidy_4, b similarly indicates a portion based
on Toroidp and Toroidy_p, and c similarly indicates
a portion based on Toroidc and Toroidy_c. For in-
stance, toroidal region 010 consists of points out-
side Toroids and Toroidc, but between Toroidg and
Toroidy_p.

We will use the notation Blowup,, and refer to
this as the blowup of A, for the set of lines through
A. Each line should be regarded as a possible tangent
line of a differentiable curve passing through A. In
the next section, such a curve will be the path of a
smoothly moving particle. We will also use the nota-



tion DoubleBlowup,, and refer to this as the double
cover of the blowup of A, for the set of all rays that
originate at A. Each such ray clearly corresponds to
a line through A in a two-to-one way. In this sense,
there are two elements of DoubleBlowup, for each
element of Blowupa.

While an element of DoubleBlowupy is techni-
cally a ray, we will want to think of it as representing
a point that is infinitesimally close to A, in the
direction of the ray. As such, it has three view angles
o, B and y associated with is, which naturally extends
the definition of the view angles of ordinary points in
space. It also makes sense to talk about the ordinary
points in space that are weakly or strongly related to
a “point” in DoubleBlowupy. Now, DoubleBlowup
can naturally be visualized as a tiny (infinitesimally
small, really) sphere, centered at A. Figures 2 and 3
show the upper half of DoubleBlowupa, regarded as
a sphere. Antipodal points on this sphere are weakly
related, but not strongly related. This basically means
that if a moving particle passes through A, at this
exact moment, the particle instantaneously changes
to a particle that is only weakly related to the original
particle.

Lemma 9. Given any (ordinary) point p on Toroidy,
with view angles o, = A, B, and v, there is exactly
one point on DoubleBlowup, with view angles o,
By and y,. Its antipodal point on this sphere has view
angles o, T — B, and ©T—7,. Similarly for Toroidg
and Toroid.

Proof. Consider the three rays emanating from p,
one pointing to A, one pointing to B, and one pointing
to C. Translate and rotate this configuration of rays
so that they now emanate from A, with the second ray
still pointing to B, and the third ray still pointing to C.
Regard the first ray as an element of DoubleBlowupa.
This point will have view angles A, ©— B, and T—,,.
Its antipodal point (on DoubleBlowup,) will have
view angles A, B, and Y,. This latter point is strongly
related to p. The uniqueness of these points is
immediately clear.

O

We will now explore the intersection of
DoubleBlowup, with each of these: Toroidy,
Toroidg, Toroidc, Toroidy_g, Toroidy_c, and CSDC.

The intersection with Toroid, is simple. The tangent
plane of Toroidy at A is simply the vertical extension
of the tangent line for the circumcircle (unit circle) at
A, which is also the tangent plane of the danger cylin-
der at A. This plane cuts the sphere DoubleBlowups
in a great circle. Based on this cut, one side of the
sphere is outside Toroids (and outside the danger
cylinder), and the other side of the sphere is inside
Toroidy (and inside the danger cylinder).

To understand the intersection of DoubleBlowupa
with  DoubleToroidg, begin by noticing that
DoubleToroidgp has a singularity at A.  While
there is no tangent plane at A, there is instead a dou-
ble cone that is tangent to DoubleToroidp at A. The
intersection of DoubleBlowup, with DoubleToroidp
is the same as the intersection of DoubleBlowupa
with this double cone, which is clearly a pair of
circles. On the sphere (DoubleBlowup,), between
these two circles, we have the points whose second
view angle (B) is between B and T — B. On the other
side of one of the circles are the points whose second
view angle is less than B. On the other side of the
other circles are the points whose second view angle
is greater than ©t — B. Similarly for the intersection of
DoubleBlowupy with DoubleToroidc.

The intersection of DoubleBlowups and CSDC
involves a simple closed curve on one hemisphere
and its reflection on the other hemisphere. Between
these closed curves on the sphere lie the points that
are outside CSDC. Inside each of the closed curves
are the points that are inside CSDC. Figures 2 and 3
show how DoubleBlowup, is carved up based on the
various intersection. Clearly the situation is similar
for DoubleBlowupp and DoubleBlowupc.

S LOCATING RELATED POINTS

Throughout this section, it will always be assumed
that the control points triangle is acute. Also, when
counting points, we will restrict our attention to points
in the upper-half space, recalling again that the reflec-
tion of any point about the xy-plane is strongly related
to the first point. We will be concerned with moving
particles, and their motion will be assumed to be con-
tinuous and smooth. Remember that by Corollary 1,
points not on the danger cylinder or CSDC have ex-
actly one weak relative, if they are outside CSDC, or



Figure 4: Transition graph of toroidal regions

exactly three weak relatives, if they are inside CSDC.
Lemma 9 will be repeatedly exploited in this sec-
tion. It tell us that whenever a particle passes through
a basic double toroid, in an ordinary way, exactly
one of its weak relatives will pass through the cor-
responding control point. Notice too that when pass-
ing through a control point, a particle’s corresponding
digit in its region descriptor will change from O to 1,
or vice versa, and each of the other two digits either
remain 1, or else change from O to 2, or vice-versa.
Various regions, such as “in toroidal region
100, and inside CSDC” will be considered. While
there is considerable evidence that such regions are
connected, and arguments concerning this can be
advanced in light of results in the next section, such
connectivity will generally not be assumed here.

Lemma 10. Figure 4 is a graph that has a node for
each of the fourteen toroidal regions. A solid edge is
drawn between two nodes of the graph if and only if
the corresponding regions share a two-dimensional
portion of a basic double toroid, as a common
boundary. A dotted edge is drawn between two nodes
if and only if it is possible to move smoothly from
one region to the other by just passing through a
control point. The edge thickness reflects which basic
double toroid or which control point is used: thin for
DoubleToroidys or A, medium for DoubleToroidp or
B, and thick for DoubleToroidc or C.

Proof. It must first be established that there are four-
teen toroidal regions, and that these are as labeled

in the graph. Because “0” and “2” cannot both oc-
cur in a region descriptor, because of Lemma 8 (see
below), we are limited to these possibilities: 000,
100, 110, 111, 122, 112, and 222, and descriptors
obtained from these by permuting the digits. How-
ever, region 222 does not exist. To see this, notice that
Toroidy_s NToroidy_g N Toroidy_¢ consists of a sin-
gle point, namely, the orthocenter of the control points
triangle. It is then easy to see that all other points are
outside at least one of the three toroids involved here.

It is straightforward to check that each of the other
descriptors describes a valid toroidal region, by sim-
ply identifying a point inside each region. Much of
this can be seen by considering the double covers of
the blowups of the control points (see Figure 3).

Next, the solid edges in the graph are easily
checked. For instance, if a particle is in region 000,
and close to Toroidy, then it can pass through this sur-
face, and will clearly arrive in region 100.

Checking the dotted edges is only slightly more
tricky. For instance, if a particle in region 010, and
near control point A, it can travel through A. In do-
ing so, it will also pass through Toroids, moving in-
side it. Also, its second are third view angles will in-
stantaneously (discontinuously) change to their sup-
plementary angles. Thus, the particle will transition
from region 010 to region 112. (Although the mid-
dle digit here remains “1”, the second view angle will
have changed to its supplementary angle.) The other
dotted edges can be similarly checked.

O

Given a point p in some toroidal region, it is sim-
ple to determine up to four possible toroidal regions
that could contain its weak relatives, since the view
angles must either all be the same as those of p, or
else one of the angles must be the same, and the other
two must be supplementary to the corresponding an-
gles of p. For instance, by this reasoning, if p is in
region 122, then each of its weak relatives must be
in region 122 or 100 or 120 or 102. However, regions
120 and 102 do not actually exist, because, by Lemma
8, a “0” implies being outside the unit sphere, while
a “2” implies being inside the unit sphere. Therefore
a toroidal region descriptor cannot contain both a “0”
and a “2”.

If p is instead in the region 111, then each of its
weak relatives must also be in this region. However,
when comparing p to a weak relative g, it will help to
indicate when they have supplementary view angles



instead of equal view angles. For this purpose, we
might speak of p being in state 111, and g being in
state 111, as a way of saying that p and ¢ are both
located in region 111, have the same first view angle,
but the other two view angles for g are supplementary
to those for p. To indicate supplementary angles, it
does not matter whether we underline a “1” in the
state descriptor for p or for g, as long as we underline
one or the other, but not both.

Lemma 11. If a point is in the toroidal region 000,
then so too are all of its weak relatives, and these are
in fact, strong relatives.

Proof. Approaching the limiting case discussed in
(Rieck, 2015) (i.e. z — o), all of the view angles
tend to zero. Here we are dealing with points in the
toroidal region 000, and so this region is nonempty.
The results in (Rieck, 2015) indicate that in this lim-
iting case, any point inside CSDC (which here is just
the standard deltoid curve) has three strong relatives,
and any point outside the CSDC has only one strong
relatives.

Thus, in the limiting case, the weak relatives are
all accounted for by these strong relatives. If a particle
moves from the limiting case, and does not cross a ba-
sic toroid, it will remain in region 000, and all points
of this region can be reached in this manner, since it
is obvious that this region is connected. If the particle
also avoids the CSDC, then its number of weak rela-
tives will not change. Moreover, by continuity, these
weak relatives will remain strong relatives.

O

Lemma 12. Inside CSDC, four weakly related par-
ticles can be in any of the following quadruples of
toroidal region states, and no others:

(000, 000, 000, 000), (100, 100, 100, 122),
(110, 110,112, 112), (111, 111, 111, 111),

and similar state quadruples obtained from these by
permuting the entries in the triples together, and/or
by permuting the triples in a quadruple.

Proof. Consider a particle p, initially outside the
three basic toroids, and inside CSDC. So the state
quadruple for it and its weak relatives is initially (000,
000, 000, 000). Now, while remaining inside CSDC,
it is possible for p to move to any point inside all the
basic toroids, and inside CSDC, in such a way that it

stays inside CSDC, and crosses each of the three basic
toroids just one time. Without loss of generality, sup-
pose that it crosses Toroida first, then Toroidp, and
then Toroidc. p could move in this way to any point
in toroidal region 111, inside CSDC. Also, any point
inregion 100, inside CSDC, could be reached by stop-
ing prior to crossing Toroidg. Similarly for region
110, inside CSDC.

Regarding the particle ordering suggested by the
quadruple notation, assume that p comes first. When
p passes through Toroidy, the other particles must do
likewise, except precisely one of them must also pass
through the control point A, by Lemma 9. If we as-
sume that the last particle goes through A, then the
state quadruple will become (100, 100, 100, 122).

When p next pass through Toroidg, one of the
particles must go through B, but this is not possible
for the last particle. Assuming the third particle goes
through B, the state quadruple (110, 110, 112, 112)
results. p will then pass through Toroidc, but one of
the first two particles, say the second one, would need
to pass through C. The result would be (111, 111,
111, 111). All of the state quadruples encountered so
far are therefore possible. The state quadruples ob-
tained symmetrically from these state quadruples are
also achievable, of course.

Now, by continuity, while a particle remains in a
particular toroidal region, and inside CSDC, the state
quadruple associated with it and its weak relatives
will not change. We have already accounted for each
of the possible toroidal regions here, and thus we
have determined all of the possible state quadruples.

O

Lemma 13. Outside CSDC, for a pair of weakly re-
lated particles, the following pairs of toroidal region
states are possible:

(000, 000), (100, 122), (112, 112),

and similar state pairs obtained from these by
permuting the entries in the triples together, and/or
by swapping the triples in a pair.

Proof. To make the following argument for these
state pairs, we will need to know that it is possible for
a particle p to begin outside the three basic toroids,
pass through one of them, say Toroidy, and then pass
through one of the apexes of this toroid, say B, all the



while staying outside CSDC. Figure 3 suggests that
this is possible, but producing a rigorous argument is
a bit tedious. Such an argument should also ensure
that any point outside CSDC, and in either region 100
or 112 is reachable in this way.

Let g be the weak relative of p. The state pair
for (p,q), as p travels the suggested path, will change
from (000, 000) to (100, 122), and then to (112, 112),
so the listed state pairs are achievable. So too are
the state pairs symmetrically obtained from these state
pairs.

O

Lemma 14. If a particle is outside CSDC, and in the
toroidal region 110 or 101 or 011, then its weakly
related particle is in the same region, and these two
particles are strongly related. Also, if a particle is
outside CSDC, and in the toridal region 111, then it
is not strongly related to its weakly related particle.
Together with the previous lemma, this determines all
possible state pairs when weakly related particles are
outside CSDC.

Proof. Suppose a particle p is in region 011, and out-
side CSDC. Let g be the weak relative of p. The
only conceivable state pairs for (p,q) are these: (011,
011), (011, 011), (011, 211) and (011, 211). How-
ever, (011, 211) and (011, 211) are not possible be-
cause Lemma 13 shows that a point in region 211, and
outside CSDC, is paired with another point in region
211, not region 011.

Next consider the state pair (011, 01 1). It can be
checked that in this case, neither p nor g can pass
through a control point. (See Figure 3 for the case of
A, and for B and C, simply observe that both a “0” and
a “2” would occur in a region descriptor.) So neither
can pass through a basic double toroid, not without
first going through CSDC. If p passes through CSDC,
then g must also pass through it, and simultaneously a
pair of (real) weak relatives will be created on the dan-
ger cylinder. After passing through CSDC, the result-
ing quadruple of toroidal region states for the result-
ing particles (p,q,r,s) would be have this form: (011,
011, ..., ...). However, this does not match the pos-
sibilities listed in Lemma 12, and hence is actually
impossible. The only remaining possible state pair is
(011, 011), and so p and g must be strongly related.
Similarly if p in instead in region 101 or 110.

Next, suppose instead that p and its weak relative

g have initial state pair (111, 111). Let p pass through
Toroidy as g passes through A. The state pair changes
to (011, 011)), which we know now is impossible.
Thus p and g cannot be strongly related if they are in
region 111. For each possible toroidal region, outside
CSDC, the state pair for a particle in this region, and
its weak relative, have now been identified.

O

We are now ready to state and prove the principle
result of this section.

Theorem 3. Assume the control points triangle is
acute. Consider a general point p in the upper-half
space of three dimensional (real) space. We will
consider only the upper-half space in the following.

1. If p is outside CSDC, and outside all three basic
toroids, then there is one other point with the same
view angles as p.

2. If p is outside CSDC, and outside two basic
toroids, but inside the other, then there are no
other points with the same view angles as p.

3. If pis outside CSDC, and outside one basic toroid,
but inside the other two, then there is one other
points with the same view angles as p.

4. If p is outside CSDC, and inside all three basic
toroids, then there are no other points with the
same view angles as p.

5. If p is inside CSDC, and outside all three basic
toroids, then there are three other points with the
same view angles as p.

6. If pisinside CSDC, and outside two basic toroids,
but inside the other, then there are two other
points with the same view angles as p.

7. If p is inside CSDC, and outside one basic toroid,
but inside the other two, then there is one other
points with the same view angles as p.

8. If p is inside CSDC, and inside all three basic
toroids, then there are no other points with the
same view angles as p.

Proof. Together, Lemmas 11 through 14 describe all
of the possible state pairs (in the outside CSDC case)
and possible state quadruples (in the inside CSDC
case). If p is outside CSDC, and outside all three ba-
sic toroids, then the corresponding state pair for p and
its weak relative is (000, 000), and so the two points



Figure 5: Pairwise intersections of
the basic double toroids

are strongly related. If instead, p is outside CSDC,
outside two basic toroids, but inside the other basic
toroid, then, without loss of generality, the state pair
will be (100, 122), and so p does not have a strong
relative. If instead, p is outside CSDC, outside one
basic toroid, but inside the other two basic toroids,
then, without loss of generality, the state pair will be
(110, 110), and so the two points are strongly related.
If instead, p is outside CSDC, and inside all three ba-
sic toroids, then, without loss of generality, it is in
toroidal region 122, 112 or 111. In any of these cases,
it is seen that p does not have a weak relative in the
same state as p, and so p has no strong relatives.

If p is inside CSDC, and outside all three basic
toroids, then Lemma 11 ensures that its three weak
relatives are actually strongly related to p. If instead,
p is inside CSDC, and outside two basic toroids, but
inside the other basic toroid, then, without loss of gen-
erality, the state quadruple is (100, 100, 100, 122),
and so p has two strong relatives. If instead, p is in-
side CSDC, and outside one basic toroid, but inside
the other two basic toroids, then, without loss of gen-
erality, the state quadruple is (110, 110, 112, 112),
and so p has one strong relative. If instead, p is inside
CSDC, and inside all three basic toroids, then, with-
out loss of generality, it is in toroidal region 111, 122
or 112. In any of these cases, it is seen that p does not
have a weak relative in the same state as p, and so p
has no strong relatives.

O

Figure 6: Intersection of CSDC
and a basic double toroid

6 INTERSECTIONS OF
SURFACES

In order to gain a good sense of the various sur-
faces of relevance to the P3P problem, and in order
to produce highly accurate images of how they inter-
sect, parametrical formulas were obtained for the var-
ious intersection curves. In all cases, the curves are
real rational curves when considered in “xyZ-space,’
meaning that the totality of possible triples (x,y,Z)
in three-dimensional real space constitute a rational
curve, in each case. It has proven to be quite useful
here to regard the xy-plane as the complex plane, for
easier manipulation of rather complicated formulas.
Howeyver, this does not mean that we are here inter-
ested in “complexified” versions of the curves, that is,
we are not treating x, y and Z as complex variables.
They remain real variables, but as has been the prac-
tice throughout this paper, we are consolidating x and
y into a single complex variable { by taking { = x+iy.

The formulas given for each curve (below) pro-
vide explicit values for {, { and Z as rational func-
tions of m, where ® is free to range over the unit com-
plex numbers (i.e. ® € €). Clearly, formulas then
become immediately available for x, y and z, by using
x=(C+0)/2,y=({—0)/2, and = £VZ.

Figure 5 shows the curves obtained, in the upper-
half space (of xyz-space) when pairwise intersect-
ing the three basic double toroids, DoubleToroidy,
DoubleToroidg, DoubleToroidc. Figure 6 shows the
intersection of one of these double toroids with CSDC



(and suffers a bit from a rendering issue).

Figure 7 shows the intersections of all the basic
double toroids with each other, and with CSDC. This
becomes rather messy inside the unit sphere. Notice
too that the three basic double toroids intersect in a
unique point in the upper-half space, which can be
shown to be above the reflection of the orthocenter
about the origin.

Theorem 4. The (real) rational curve in xyZ-space,
given by the following parameterization lies on the
intersection of the double toroids DoubleToroidp and
DoubleToroidc (when realized in xyZ-space):

C P
(146 8) O (1438)
(CEaEeraal L e memealdy

C p—
(1488) &3 4 (1+52)6
(eEaIEataal il c=aEeaTaal Ly

Z = (1+836G)(1+68):
[(G-0G+0B) o + (—L+LG -Gkl
(146 -LG)o '+ (1-G+6LG)o
+G-C)p] / 168 (L —)?
(1-8+88) (1 -G +88)]

where p = [(1— 0 +883) (1= G+ 683)/(683) /2 is
constant, and ® ranges over complex numbers such
that |®| = 1.

Proof. Using the equations discussed in the previous
section for DoubleToroidg and DoubleToroidc,
eliminate Z (= z%), to obtain the equation ¢ &3 (1+

GG (1 + 688 + LG+ 86%)(1+ LT -
GGG + G + 45585 + 58 + L)L — (38 - 1)?
= 0. A direct check shows that the formulas given
in the theorem for { and { satisfy this equation.
Next, set the formulas for DoubleTorioidg and
DoubleTorioidc equal to each other, and solve the
resulting equation for Z to find that Z = (1 — Q) [({, —
G+ (L-8G)0+ 08 -G +0G - GG] /
[(&a—C3)C + (L, —C3)C]. This can then be manip-
ulated using the formulas for { and { to obtain the
formula for Z in the theorem.

Figure 7: Several intersections

Theorem 5. The (real) rational curve in xyZ-space,
given by the following parameterization lies on the
intersection of DoubleToroids and CSDC (when re-
alized in xyZ-space):

=

—14+2583 0+ (L + 8 -8B 83) 0 2083 (L +83) 0° — L3 (5 +83) @°

[1-08G(6+0) 20 0— (L +5-88) 0?] o?

C =
0 —83-2(G+83) @+ (583 (G +83) - D) 0*+20 03 0’ — GG o°
[1-58(6+83) 208G 0— (L+G-GE) 0?] o?

7 =
—(L2+8) (LG+0*) (1 -5 0)? (1 -5 0?)? (1 - o?)?
GG [1- 583 (6+E3) 200 0— (L+8—-B8) 0] o

where ® ranges over complex numbers such that
|o] = 1.

Proof. If a point ({,z) is on CSDC, then {; € D.
In this case, there exists a unique ® € € satisfying
0> —2® = 0> —2/® = {7, as discussed in the proof
of Theorem 2. Using the formula for ' in (2) in
place of { here (because of Theorem 1), we obtain
a polynomial equation connecting ®, ¢, { and Z. If
we assume further that ({,z) is on DoubleToroid,,
then Lemma 7 provides another polynomial equation
relating {, { and Z. By eliminating Z from these two



equations, we obtain a single polynomial equation
connecting the variables ®, { and C:

4005(8 + Gals + §3) — 408 (8 + 83)8 + (486585 —
4G5 +8))E

+HGLGG + B+ 8) —2(-8 -G+ 88+ 38+
2(G + G3) (=1 + GLs + L) — 26,83(82 + G)E +
26,85(-385 — 408 - 385+ B8 + 8L - 2088G(8 +
4083 + G3)C0+ 2883 (2 + G383 + L L)L+ 60383 (G +
()T - 433 o

-G+ G+ 88 +200 + GG+ L)L+ G+
GLE — (1 + 88 + L83)°C + (L + 5)(G + & +
GGE — (L +8)8 — 288G + G+ ST+ (-85 -
G+ 20305 + 28503 + G85) 00— LG (383 + 8003 + 385 +
GG+ 3P+ (14288 +263) 00— Ll (28 -
300 — 23 + 2638 + 28T + 208G + & +
GG + 388 + LT - G2+ GG + LT -
2886 +6)8 + BEE o

400 (G + 8 +85) +400 (L + L)L HAGL (G +
G3)0 - 4G553L o’

H200(6+ G+ 88 + (-G -G+ G +58)E -
(G + G)(=1 + GG + LT + LG(G + 6)E -
GGa (=385 — 488 — 385 + 58 + GG)T + GGG +
4883 + G3)C0 — Lal3 (2 + 6383 + L83) L - 3583 (L +
)8 + 233 o

HGG (G + Gl + 8) — LG(6 + 6L - GGG +
G)C+GEGLL e =0.

A direct computation reveals that the equation is
satisfied when the formulas for { and { in the theorem
are substituted. (This computation is quite tedious,
and so best performed with software.) Moreover, the
first of the two equations used to eliminate Z is linear
in Z, and when solved for Z, reveals that

7 - (1-80) [(6 8 —(1468(648:) L6560+ +6+88]
G2+ (E-20) 0+ o] :

When the substitutions for { and { are made in this
formula, it becomes straightforward to manipulate
the resulting expression to obtain the formula given
for Z in the theorem.

O

Theorem 6. The (real) rational curve in xyZ-space,
given by the following parameterization lies on

the intersection of DoubleToroidy and the danger
cylinder (when realized in xyZ-space):

§ = o
t = 1/o
7 = (GrG)(@+50)

GGo

where ® ranges over complex numbers such that
|o| = 1.

Proof. When { is set equal to 1/¢, meaning that (£, z)
is on the danger cylinder, and this is substituted into
the formula for DoubleToroids, we obtain a simple
equation, as follows:

Z[(C+G3) (P 4+ 8ols) — 638 Z) = 0.
Assuming that Z # 0, we find that

7 — (C2+§3)(C2+C2C3).

88 ¢

Of course, it is required that { € €. It is then clear that
the stated parameterized curve is on the intersection
of the danger cylinder and DoubleToroidy,.

O

Obviously, each of the preceding three theorems
can be altered, by simply rotating the indices, to
similarly handle the other basic double toroids.
Moreover, for each of these theorems, the unit circle
¢ is also part of the intersection of the two surfaces
being considered. In fact, the parameterized curve
in the theorem, together with &, constitute the entire
intersection of the two surfaces involved. This claim
is not proved here, however.

7 THE DISCRIMINANT OF
FINSTERWALDER'’S CUBIC

The method of S. Finsterwalder, as descibed in
(Haralick et al., 1994), is traditionally one of the bet-
ter methods for solving the P3P problem, and is the
basis for the most successful method currently used
(known as “Lambda Twist”). The problem is reduced
to finding a root of a cubic equation, which is equation



(14) in (Haralick et al., 1994) (but “A” is here replaced
with “A” for practical reasons):

GA> +HAN’> +1A+J = 0.

Using the notation of the present article, the coeffi-
cients of the cubic are as follows:

G = d5[di(1-c3) —d3(1-c3)]

H = d3(d; —d})(1 = c3) +d3(d3 +2d7)(1 = c3)
+ Zd%dg (6‘16‘203 — l)

I = d3(d5 —d3)(1—c}) +di (df +2d5)(1 - c3)
+ Zdlzd% (6‘16‘203 — l)

J = di[di(1-c3) —dj(1—c})].

Define § = G/n?, H = H/n?, J =1/n? and
J=J/n. Then G/d3 and J/d? are of the form de-
scribed in (Rieck, 2014)[Theorem 1 and Lemma 10].
Moreover, each of G, H, J and J are of the form de-
scribed in (Rieck, 2018)[Section 3], and satisfy con-
ditions (5) found in Lemma 10 there. As such, each
can be expressed as a linear combination of 1, £ and
X, with coefficients that depend only on the control
point positions, and where X = —1 —R, and £ and R
are as in (Rieck, 2018). So,

K=[(—yt+2x) (1—c}) + (63 —¥3+2x)
(1=e3) + (3 —yi+2x3) (1-¢3)
—ZXH(I—C]C2C3)] /1’]2 and

L=2[(x1—=y1(1=cf)+ 2=y (1-¢3)
+ 3=y (1—=c3) +yu (1 —cieae3)] /M2

o)

Letus write § = 16 + kg K +Ac L, H =1y +
KkuXK+Ag L, I =uyu+xX+ML and J =1y +
¥y K + Ay £, for constants g, Xg, AG, \y, Kis AH, U,
K7, A1, 1y, Ky and A that depend only on the control
point positions.

These coefficients can be found as follows. When
d is described as a function of the position (x,y,z)
of the optical center, if x> +y? = I, then (Rieck,
2014)[Theorem 1] guarantees that J does not depend
on z. Moreover, (Rieck, 2014)[Lemma 10] provides
a way to compute it. As there, let ey, be the distance
from (x,y) to the control point (xq,ye) (@@ =1,2,3).
Let f be the distance from (x,y) to the line through
(x2,y2) and (x3,y3), and similarly for f> and f3.

(Rieck, 2014)[Lemma 10] ensures that J /dl2
equals 4(e3 — f} —e2 + f7)/d3 when x> +y? = 1. Let-
ting 7o, = tan(¢g,/2), it can be checked directly that
e = [(1+12)(1+x2 + %) +2(22 — 1)x—dtoy] /(1 +

té). Also, flz = [tz + 1)+ (tatz3 — L)x— (12 —|—t3)y]2
/ [(1+13)(1+13)], and similarly for f3 and f3. Also,
from (Rieck, 2014)[Lemma 1], d? = 4(ty —13)* /
(1+13)(1+1£3), and similarly for ¢3 and d3. The val-
ues of these various quantities now become of partic-
ular interest in the special cases where (x,y) is (1,0)
or (—1,0) or (0,1), which can now be immediately
computed in terms of #{, f, and 3.

Next, consider J = 17 + x; K + Ay L. Assuming
again, for the moment, that X2+ y2 =1, it is seen from
(Rieck, 2018)[Theorem 1] that X = —1 — R = x* —
2x —y? and £ = 2(1 +x)y. So, if (x,y) = (1,0), then
we get J = 1y —Ky. If instead, (x,y) = (—1,0), then
we get J = 1, +3x,. If instead, (x,y) = (0,1), then
we get J = 1y — Ky +2Ay. Using the computed values
from the previous paragraph, and using the fact that
t +h+1t3 = t1tr13 (because O + ¢ + @3 = 0), it is
then straightforward to compute the following values:

1y = 4(t2—l‘3)2(l11‘2—1)(t3—3)1";
/1(0+8)(1+5)* (1 = 1)]

Ky = 4(t2—l‘3)2(t1t2—1)t3
J10+3) (1+8) (1 —12)]

Moo= 4-n)(nn—1)
J10+83) (1+8) (2 —11)]

By symmetry, formulas for kg, Ag and ps can be ob-
tained from the formulas for ¥y, A; and py, respec-
tively, by simply making the transposition 1 <+ 3 on
the indices.

An analysis of J begins by noticing that [ =
&G /d3 + (d} —d3+d3)J/d? + d}d3, and so J =
d?G/d3 + (d? —d3+d3)d/d} + did3. From this
we can deduce formulas for 17, k; and A; in terms of
11, t» and f3. Again, by symmetry, using the transpo-
sition 1 <> 3 on the indices, we then obtain similar
formulas for Ky, Ay and py.

Again using t| + 1, +13 = t| 13, it becomes pos-
sible to put all these coefficients into the following
helpful form, which can be checked by hand or with
the aid of algebraic manipulation software. This will
then be used to compute the discriminant of Finster-
walder’s cubic.

Lemma 15. Set

qg=(1+17)(2—1)/[(1+5) (2 —1)]
and

M=4(t15—-1) (tg—tl)z/[(tz—h) (1+t12)3].



Then G = 16 + k¢K + AgL, H =15 + kgK +
Ml I=u+xKXK+ML and J =1y +K;K +
Ay L, with

I = M(3—112)l‘1

X = —M(1+l12)t1

Ae = M(1+1)

W = 3Mq(2t+t—1t3)
Ky = —Mq(2t1+t3+3t12t3)
A = Mq(3+1F+2n1)
1y = 3Mq(t1+2l3—t1t32)
K = —Mq(l1—|-2t3+3t1t§)
A= Mq(3+t32+2t1t3)
u = M@B-1)n

kK, = Mg (1+2)n

}\.j = Mq3(1+l§).

Lemma 16. The discriminant of Finsterwalder’s
cubic equals a nonzero constant (depending on the
control point positions) times

(K24 L2 +12K+9) —4(2K +3)°.  (6)

Proof of Lemma 16. The discriminant of Finster-
walder’s cubic equals the discriminant of this cubic
polynomial (in A):

GA> + HA>+TA+ .

This in turn is a nonzero constant times the discrimi-
nant of the cubic polynomial (in ¥ = gA)

3 2 . .
¥ +hw +i%+

where
g = B-)t — (1+H)n K+ (1+3) L
R = 321 +13—1313) — (21 +13+ 313 13) K
+ B3+ +246) L
L o= 3(n+26-—n13) — (h+26+3613)K

+(B+13+2n5)L
i = B-1)t— (1+3)K+ (1+13)L
To manage this computation, let us introduce new
(atomic) indeterminates K and L, and then locally
(just inside this proof) define

g = B-f)n—(1+)nk+(1+7)L

h = 3(2t1+t37t12t3)7(2l1+l3+3t12t3)K
+ @B+ +2n3)L

i = 3(t+23—-n13) — (1 +2+3012)K
+(3+15+2113)L

i = B-2Ht-(1+3)K+ (1+83)L

The discriminant of the cubic polynomial (in w)
gw3 + hw? +iw+ j.

is rather simple, even when the coefficients are ex-
panded as above. It turns out that it equals the follow-
ing, which is straightforward to check:

4(t1—13)° [4(2K +3)* — (K +L*+ 12K +9)?].

The claim in the lemma now follows by substituting
X and £ for K and L, respectively.
O

The main result of this section is the following.

Theorem 7. Grunert’s system of three equations, i.e.
the first three equations in (1), has a repeated solu-
tion, if and only if the corresponding cubic polyno-
mial of Finsterwalder has a repeated root, if and only
if (K2 + L2+ 12K +9)? = 4(2K + 3)>. In this case,
the quartic polynomial of Grunert also has a repeated
root.

Proof. The second “if and only if” is automatic since
a polynomial has a repeated root if and only if its dis-
criminant vanishes. Clearly any repeated solution to
Grunert’s system corresponds to a repeated root of the
cubic polynomial. The converse must be established.

It is straightforward to check that {;, defined in
(2), equals K + Li. The discriminant of Finster-
walder’s cubic (6) can then be seen to be a nonzero
constant times D, defined in (3). By Lemma 6, it can
only be zero when a solution point is on the danger
cylinder or CSDC, and in the latter case, some weak
relative of the point is on the danger cylinder. Ei-
ther way, the Grunert system, whose unknowns are
s1, s> and s3, has a repeated solution, by (Rieck,
2014)[Proposition 1].

This establishes the first sentence of the theorem
being proved here. Now, if Grunert’s system has a



repeated solution, then clearly Grunert’s quartic poly-
nomial has a repeated root, which is the second sen-
tence.

O

Note: Ttis known that it is possible to have a repeated
root of Grunert’s quartic polynomial without having
a repeated solution of Grunert’s system. However,
as we now see, a repeated root of Finsterwalder’s
cubic polynomial always ensures a repeated solution
to Grunert’s system, and hence a repeated solution
to the extended Grunert system. In this sense,
Finsterwalder’s cubic is arguably more fundamental
than Grunert’s quartic.

8 CONCLUSION

Our initial motivation in this research was a de-
sire to understand, as completely as possible, when
points in space have the same three “view angles” to
the three given “control points” of the P3P problem.
More precisely, we wanted to know, given a reference
point, where are the other points with the same view
angles, and how many such points are there? We feel
that we succeeded in this objective, especially in light
of Theorem 3.

To truly understand this theorem, and why it is
true, it is necessary to appreciate the nature of the var-
ious surfaces involved, and how they intersect. Quite
a lot of detail in this regard has been presented. We
argue that it is also helpful to understand when two
points are related in the weaker sense that the lines
connecting them to the control points constitute iso-
morphic triples of lines, in the sense that a rigid mo-
tion can be applied to move one of these triples of
lines to the other.

While much has been accomplished in the present
article, there certainly remains an opportunity to
come to an even better understanding of how points
are related, viz. the P3P problem. We believe that
the dynamic approach that we used here could also
benefit future researchers in this subject.
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APPENDIX

The following series of lemmas constitute a proof
of the irreducibility claim made about the polynomial
P in Lemma 5.

Lemma 17. The following three polynomials in in-
determinates ( and ® (for any Cy € C) are absolutely
irreducible: {o—1 | Cﬁoz 4+’ + 18w —
27, - Cul— o+l

Proof. Without loss of generality, we will regard the
complex number field C as the field of coefficients,
and show these polynomials are irreducible. The
first polynomial is trivially irreducible. Next, sup-
pose there is a non-trivial factorization {*@? —4({> +



®%) + 18{w —27 = g1¢>. The sum of the degrees of
q1 and g, must equal four. So each has degree 1, 2 or
3.

Without loss of generality, ¢ has degree three and
g» has degree one, or else both have degree two. The
first case then is q; = al® + b?w + clw? + dw’ +
el + flo+ g0 +h+ jo+k and g2 = I{+ mo+n.
The second case is ¢; = al® + bl0+ co)> +d{+ e+
fand g2 = gC® +h{o+ jw® +k{+lo+m. Both cases
are easily checked and found to be impossible. We
thus conclude that ?w? — 4(3 + @) + 18Lw — 27 is
absolutely irreducible.

Next, consider a possible factorization of {> —
CuC — @+ Cy. This would need to be a product of
linear polynomials, say a{+ b®w+ ¢ and d{+ em + f.
Clearly we need ad = 1, be =0, and w.l.o.g., b = 0.
The coefficient of {® is then ae, and so we need ei-
ther a = 0 or e = 0. But these are both clearly im-
possible. Therefore, {> — {{ — @+ (p is absolutely
irreducible.

O

Lemma 18. Write
P = A4Z4+A3Z3+A222+A12+A0,

where Ay, A1, Az, A3z, Aq are polynomials in C and E
Then

Ao = (& =Cul—C+8n)* (= CuC—-C+Ln)’
(56— 1),

A= (C-1A and

Ay = PO —4(0 +8) + 180027,

where A is a polynomial of degree eight in { and
€. Moreover; the polynomials Ay, A1, Az, A3 and Ay
have respective degrees twelve, ten, eight, six and
four.

Proof. Upon setting Z = 0, Z; becomes ({> — {yl —
C+Tn) (G- 1), Z becomes (€ ~TuT—C+Ln)
(CC—1) , D becomes Z?ZZ, and the claim concern-
ing Ao is immediate. Regarding D as a function of
Z1, Z;, and Z, it can also be checked that upon setting
Z =0, the quantities 9D /0Z; , 9D /dZ; and 0D /dZ,
become 27,72, 27?7, and —4(Z; +7L3), respec-
tively. Expanding these in terms of {z, (g,  and C,
it can be observed that each of the resulting three ex-
pressions has ({C — 1)* as a factor.

Regarding Dasa polynomial function of {, { and
Z instead, it follows that 8@/82 has ({C —1)° as
a factor, when Z is set to zero. Therefore 0P /0Z

has CE — 1 as a factor, upon setting Z = 0. There-
fore, {{ — 1 is a factor of A;. Now, As Z — oo,
¢, approached {2 —2{. When {? —2C is substi-
tuted for {; into the formula (3) for D, the result is
(CC— 1) [P0 —4(8 +C3) + 18LL — 27]. (There is
a nice geometric reason for this that will not be dis-
cussed here.) The claim concerning A4 follows im-
mediately from this.

For j =0,1,2,3,4, the claim is that the polyno-
mial A; has degree 12 —2j, as a polynomial in {, {
and z. This is clearly an upper bound since P has de-
gree twelve. The fact that this is the actual degree of
A follows from the fact that A; has a non-vanishing
(£0)5~ term. To see this, expand D but only focus on
terms of the form (£{)3~*Z*, which are real terms of
maximal degree. Only the {>Z and {3 parts of the
expression for Z; can contribute here. Similarly for
Z1. The 727} term in the formula for D contributes
(CZ+ 00z +80)?* = ' (Z+L0)" This
has a non-vanishing term of the form ({{)8~% Z% for
o =0,1,2,3,4. No other terms in the formula for
D contribute terms of this sort; they only contribute
terms of lesser degrees. This establishes the claims
concerning the degrees of Ag, A, A, Az and Aj4.

O

Lemma 19. ({1, & —{uC—C+Cy and 2 —
Ci C— 4Ly are not factors of Al

Proof. As in the proof of Lemma 18, observe that
(022,/C, 027, /0T) and (337./0C , 87, /3T )
become respectively  (—28,4 + 2Z — 2LyQ)
and (0,6¢), upon setting { to 1/ Also,
(02D /922 ,0*D /92,07, , D J3Z;) becomes
(2(1+28—28%) (1—20+4 60> +48° +4LH) 2% /¢4,
—2(4 — 198 + 4%)2% /%, —2(2 — 20 — (P)(4 +
45+ 602 — 200 +¢HZ2 ) ). Also, (9°D/9z3,
PD/0z20Z;, 3D /02,07 ,9D/dZ;") becomes
(=247 , 4(1 =207/, 4(C3 —2)Z/C , —242).
Applying the rules of partial differential calculus
now, it is discovered when E is set to 1/C, that
3*D /8@2 becomes a polynomial in { and Z, times

7?%/C?, and that *D / 8? becomes a polynomial in
and Z, times Z/C3. The coefficient of Z¥ in this latter
polynomial is not identically zero. It follows that
(CC—1)* divides the Z° term of D, and that ({{ — 1)3
divides the Z' term, but ({{ — 1)* does not divide the
Z! term. So, {C — 1 does not divide A/ .

Next, when % — (i + Cy is substituted for  in

~

the expansion of D, the coefficient of Z is 4({y —



0)3 (8 -ty +Cul—1)°. Since this is not identi-
cally zero, it follows that {2 — (i ¢ — C+ y is not
a factor of the coefficient of Z in the expansion of
D, and hence not a factor of A, Similarly for
G —CuC—C+Ca.

O

The next lemma is straightforward (if a bit tedious)
to check:

Lemma 20. When  is set to 1/, the following for-
mulas result:

Ap = (G —Cul+Lul—1)* /O o
AL =20 1)(C+C+1)(E - Ll +Cul— 1)/
Ay = (C+ 1D =L+ )X - Cul+Cul—1)2/C°
Az =4(C+ 122 =+ 1)2(CuC* —20+Cu) /C*
Ay =—4C+ 12 -C+1)2/8
Ay = A+ Ay = (@ —Cul+Cul—1)?

(G =20 Cal+40+Ch)? /

where Ay = Ao/ (@~ 1)? = (& - tul T+
T) (@~ T T L Ln)? and A = A1 / (T~ 1).

Another lemma that can be checked directly, though
algebraic manipulation software certainly helps, is
the following.

Lemma 21. When (g = 0, the following formulas re-
sult:

Ao= (@ -T2T - X —1)

A= (-1)ET —5CT — 50T+ +C
+120°7 — T T - 80T 4203 +20)

Ar = 60T — 180T — 180T +(0+C +520°C
120 T 4+ 120C — 7802 4603 + 60 + 18T

Az = 40T — 14T - 140T+ 5200 + 60 +6C
—72CL

We are ready now to consider various ways that the
polynomial P might possibly be factored, but will
subsequently show that each of these is actually not
possible.

Lemma 22. Suppose that P, treated as a polynomial
in x, y and Z, can be factored nontrivially into real
polynomials of x, y and Z, as P = pyps. Then, up
to interchanging pi and p), there are just three

possibilities:

Case 1.

pL = AuZ+B , pp = Z2+CZ*+DZ+¢;
Case 2.

P = AsZP+BZ+C |, pp = Z2+DZ+E;
Case 3.

P = AsZP+BZP+CZ+D |, pr = Z+E;

where B, C, D and & are real polynomials in x and y
(but also be regarded as polynomials in { and C).

Proof. This is an immediate consequence of the fact
that A4 is absolutely irreducible as a polynomial in
the variables £ and C, and the fact that P cannot have
a non-constant factor that does not involve Z. Such
a factor would necessarily divide both Ay and Ay,
which is impossible due to the Lemma 17. This leaves

us with only the above possibilities.
O

Lemma 23. Case I in Lemma 22 is not possible.

Proof. Assume there is such a factorization. Clearly,
dim B + dim € =dim Ap = 12. Let dim B =6+¢,
dim C=2+¢;,dim D =4+¢3,and dim € = 6 —¢;.
Since, A4C+ B = Az, we see thatif €, > 0 or &, > 0,
then we must have €, = € > 0, in order to cancel
terms. Since, A4D + BC = A,, we see that if € +
€ > 0 or €5 > 0, then we must have € +¢&, = €3 > 0.
Since, A4E + BD = A, we see that if —&; > 0 or
€1 +€3 > 0, then we must have —€; =€, +¢€3 > 0.
Suppose for a moment that €; > 0. Then, €, > 0,
so€ +€& >0,s0¢e3 >0,s0€;+¢€3>0,s0—¢€ >0,
a contradiction. Suppose instead that €; < 0. Then,
€1+€e>0,5s0€e3>0,s0¢€ +¢& >0,s0¢€ >0, so
€1 > 0, a contradiction. Therefore, €; =0, and we can
also see that € < 0 and €3 < 0. _
Recall that Ay = ({0 — 1)>(> — Lyl —C+
Cu)? (02 —Cy{—C+Cy)?, and that the factors here
are absolutely irreducible. Observe that B and € are
essentially real polynomials of x and y (since p; and
p> are presumed to be essentially real polynomials
of x, y and Z ), of degree six. Thus, we are forced
to conclude that B and € are both constant multi-
ples of the real polynomial ({{ —1)({> —Cu{—C+
Cy) (2 =Ly —C+Cy). (Itis real as a polynomial
in x, y and Z.) In fact, we may assume that both B
and € equal this polynomial. Since, A4€ +BD = Ay,
(&~ L~ C+C) (C —Cu L~ C+Ly) mustbe adi-
visor of A;. But this is not true, by Lemma 19.
O



Lemma 24. Case 2 in Lemma 22 is not possible.

Proof. Assume there is such a factorization. Clearly,
dim € + dim € =dim Ap = 12. Letdim B =6+ ¢4,
dim C=8+¢5,dimD =2+¢3,and dim £ =4 —¢,.
Since, A4D + B = A3z, we see thatif € > 0 or ez > 0,
then we must have €, = €3 > 0. Since, A4E +BD +
C = A,, we see that if any of €, —¢&; and €| + €3
are positive, then it must equal another one of these.
Since, BE +CD = A;, we see that if €, — &, > 0 or
€ + €3 > 0, then we must have € — &, =€, +¢€3 > 0.

Suppose for a moment that €, > 0. Then, & +
€3 >0, so either e, >0 ore; >0, sog =¢ >0,
SO +€ >0,508 —€ =€ +€ >0,s0 —¢& =
€, a contradiction. Next suppose instead that €, < 0.
Then, € +€3 > 0, so either &y >0 orez >0,s0¢€; =
e3>0,s0e —€ >0,s0¢e1—€ =& +¢€ >0, so
—€&p = &, a contradiction. Therefore, €, = 0, and we
can also see that ¢y <0 and €53 <O0.

C and € are essentially real polynomials of x and
y of degrees eight and four, respectively. We may
now easily reduce to one of two cases:

Case 2A.

€= (C—Lul—C+ln) (@ —Cnl—L+Ln)
and & = (LL—1)%

Case 2B.

e=(-n2
(@il C+Tn) @ Tul— L+ Cu) and
& = (C—Cul—C+Cn)(C—Cul—C+Cn).

Case 2B is quickly eliminated because it implies
that (8% — G §— C+Cu) (C2 = Cu §— C+ L) divides
BE + CD = Ay, which Lemma 19 indicates is not
true. _

Assume Case 2A now. Since L — 1 divides BE
and A;, but not C, it must divide D. Since dim
D <2, we must have D = A({ — 1) for a con-
stant A. From BE + CD = A; and C = A), we get
(L&—1)B +AA, = A}. Upon setting { =1/, we
must have AA{ = A/ (identically). But from Lemma
20, we see this means that we need A({® — {yC® +
Cnl—1) =2(C—1)(E2 +{+1) (identically). This
is only possible when {y = 0, in which case, we
must set A = 2. Assuming this, it can then be seen

that B = (A, — €D)/& = 2T — 34T -3¢ +
0r2T — 203 — 2T). It follows that A4D + B — As

z = 2 A .
=2(3-(—0)(9+3L+30+ 2+ —LL). Since this
is not identically zero, Case 2A is impossible, even
when (g = 0.

Lemma 25. Case 3 in Lemma 22 is not possible.

Proof. Assume there is such a factorization. Clearly,
dim D + dim € =dim Ay = 12. Let dim B = 6 +¢4,
dim G =8+¢y, dim D = 10+¢€3, and dim € =2 —
€3. Since, A4E + B = A3, we see that if —e3 > 0
or € > 0, then we must have —e3 = €; > 0. Since,
BE+C=A,, wesee thatif €, —€3 > 0 or €, > 0, then
we must have € —e3 =€, > 0. Since, CE +D = A,,
we see that if €, — €3 > 0 or €3 > 0, then we must have
& —¢e3=¢3>0.

Suppose for a moment that €3 > 0. Then, & =
263 >0,s0€] —€3=¢€5,50&] =3€3 >0,s0 —€3 =¢€3,
a contradiction. Suppose instead that €3 < 0. Then
g =—-€6>0,s0¢e —€ >0,s0¢ =¢€ —€3 >0,
S0 €& — €3 > 0, so €3 = & — €3 > 0, a contradiction.
Therefore, €3 = 0, and we can also see that €; <0 and
€ <0.

Similar to previous reasoning, in the present case,

we must have D = ((—1) (2 =y {—C+Cn)* (§2 —
Cul—C+Cy)% and € = LL— 1. Now, C = (A —
D)/€& = A, — Al. Then, B = (Ay — €)/€ = (A —
Al +Ap) /€. However, by considering the { =1/
situation again, it is clear that € is not a divisor of
Ay — Al + Aj,. Therefore, Case 3 is not possible.

O



