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Abstract In the Perspective 3-Point Pose Problem

(P3P), the transformation that converts the triple of

(unknown) camera-to-control-point distances, into the

triple of (known) angle cosines between the projection

lines, is generally locally invertible. However, this fails

to be the case when the camera’s focal point (center of

perspective) is on the danger cylinder. This situation

corresponds to a double solution to P3P, and presents

extra difficulties in solving P3P.

An extensive analysis of the danger cylinder setup

leads to the introduction of a special rational function

that proves to be quite useful in solving P3P in the

danger cylinder case. This involves some rather long

algebraic expressions that are best manipulated using

mathematical software. Ultimately, some fairly simple

formulas emerge that serve as a basis for an algorithm,
called the Double Solution Algorithm (DSA). Exper-

imental results comparing DSA with Grunert’s quar-

tic polynomial method demonstrate that DSA often

has substantially greater accuracy. This is particularly

so when the camera is relatively far from the control

points, even if it is not very close to the danger cylin-

der.
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1 Introduction

After nearly two centuries, the Perspective 3-Point Pose

Problem (P3P) continues to be of research interest,

partly because of emerging applications, and partly be-

cause of its intrinsic and interesting mathematical com-

plexity. While still of use in photogrammetry, its appli-

cations have widened into areas of digital imaging, to

address a variety of practical problems. These include

robotic control and navigation [7], [12], as well as six-

degree-of-freedom tracking for virtual/augmented real-

ity [1], [11].

P3P essentially amounts to determining the distances

from a camera’s focal point, also called the “center of

perspective (CoP),” to three known “reference points,”

also called “control points.” These control points are ac-

tual points in space whose images in the camera’s image

plane (or photograph) can be identified. The above goal

is achieved by performing computations based on im-

age measurements, intrinsic camera properties and the

known physical distances between the control points.

Naturally, when tracking a camera, it is preferable

to use more control points. Even with only four control

points, it is easier to determine the distances, and often

to do so with greater accuracy. However, it can easily

happen that all but three control points move outside

the view of the camera. (For example, this has often

been the author’s own experience tracking a Wii remote

control device using light emitting diodes for control

points.) When this limitation occurs, it is desirable to

make the best possible effort to continue tracking cor-

rectly, using only three control points, until additional

control points can again be captured in the image.

A situation which tends to cause particular difficulty

when tracking with only three control points, is when

the CoP is on or near the circular cylinder that con-
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tains the control points, and whose axis is perpendicu-

lar to the plane containing these points. This cylinder

has come to be known as the “danger cylinder.” The

difficulty is caused by accumulated roundoff error, as

discussed in this article and also in many of the cited

articles.

Since the introduction and initial solution of the

problem in [5], various efforts have been made by re-

searchers to find other approaches to solving P3P, and

to better understand the nature of the underlying sys-

tem of equations. Some of the mid-twentieth century

work, motivated largely by aerial reconnaissance issues,

can be found in [8], [9], [14] and [16]. An extensive sur-

vey of the state of P3P as of 1994 can be found in [6].

Recent studies have classified solutions [3], [4], [15], [19],

[20], produced new algorithms [2], [17], and considered

generalizations of P3P [10]. A recent reexamination of

the danger cylinder can be found in [21].

[13] undertakes the same goal as the present arti-

cle, namely to effectively handle the danger cylinder

case. However, its scope is limited to the special case

in which the separation distances between the control

points are equal. This greatly simplifies the problem,

and the analysis and algorithm there is quite different

than the analysis and algorithm in the present paper.

While the principal purpose of this article is to in-

troduce an algorithm for more precisely solving P3P

when near or on the danger cylinder, it contains a con-

siderable development of some interesting mathematics

underpinning this algorithm. This involves the intro-

duction of a useful rational function called the “ratio

function,” which can be readily computed from a knowl-

edge of the measured data, but which can also be ex-

pressed in terms of unknown quantities whose discovery

leads immediately to a solution to P3P, in the danger

cylinder case.

The next subsection introduces some basic math-

ematics of P3P. This preliminary analysis generalizes

the notation and observations presented in the intro-

duction of [13]. This is followed by a subsection that

discusses the detection of repeated solutions to P3P,

and the computational difficulties presented by such so-

lutions. In Section 2, an algorithm called the “Double

Solution Algorithm (DSA)” is introduced to overcome

these difficulties. This section also presents the results

of experiments that compare this algorithm against the

quartic polynomial approach of Grunert. Section 3 lays

out in detail the more elaborate mathematical analysis

that underpins DSA.

1.1 Problem Statement and Basic Analysis

The P3P problem assumes that the cosines c1, c2, c3 of

the angles at the CoP subtended by the rays to the con-

trol points are known. These cosines are straightforward

to calculate from the photograph (or digital image) and

intrinsic camera properties. Following a common con-

vention, c1 denotes the cosine of the angle between the

rays to the second and third control points, while c2
denotes the cosine of the angle between the rays to the

first and third control points, and c3 denotes the co-

sine of the angle between the rays to the first and sec-

ond control points. The distances d1, d2, d3 between the

control points are also presumed to be known. The sub-

scripting convention here is similar to the subscripting

of c1, c2, c3.

The distances r1, r2, r3 from the CoP to the control

points are initially unknown, and need to be deduced.

Using the Law of Cosines, the essential goal is to solve

the following system of three quadratic equations:
r21 + r22 − 2 c3 r1 r2 = d23
r22 + r23 − 2 c1 r2 r3 = d21
r23 + r21 − 2 c2 r3 r1 = d22.

(1)

It will be convenient to set Rj = r2j and Dj = d2j for

j = 1, 2, 3, and to sometimes regard (1) as a system of

equations in the unknowns R1, R2 and R3. Grunert [5]

and others (see [6, Section 3]) discovered ways to solve

this system exactly, by reducing it to a single quar-

tic (i.e. fourth degree) polynomial in a single variable.

However, the resulting quartic equation inevitably has

coefficients that are complicated rational combinations

of c1, c2, c3, d1, d2 and d3.

Nowadays, using mathematical manipulation soft-

ware, it is relatively easy to reproduce Grunert’s efforts

by eliminating any two of R1, R2, R3, and thus arrive

at a quartic in the remaining Rj :

AR4
j + Bj R3

j + Cj R2
j +Dj Rj + Ej = 0 (j = 1, 2, 3).

(2)

The coefficients here depend on c1, c2, c3, D1, D2 and

D3. The leading coefficient A, as well as the equation’s

discriminant ∆, turn out (surprisingly) to be indepen-

dent of j. Specifically, A = 16T 2 and

∆ = 16777216 T 2 S ·[
(D1–D2+D3)c21 + (D1–D2-D3)c22 + 2(D2–D1)τ

]2 ·[
(D2–D3+D1)c22 + (D2–D3–D1)c23 + 2(D3–D2)τ

]2 ·[
(D3–D1+D2)c23 + (D3–D1–D2)c21 + 2(D1–D3)τ

]2
,

(3)
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where τ = c1c2c3, T = 1 + 2τ − c21 − c22 − c23, and where

S is a complicated polynomial in c1, c2, c3, D1, D2 and

D3. The quartic equation (2) can then be solved exactly

using classical methods. 1

Eliminating say r3 from (1) is straightforward actu-

ally. Subtract the bottom two equations, and thus pro-

duce an equation that is only linear in r3. Solve this for

r3. Use this to substitute for r3 in the second equation,

to obtain an equation involving r1 and r2 only. The first

equation in (1) is another such equation. In this way,

(1) reduces to a system of two equations in two un-

knowns. Reducing this further to a single equation in a

single variable is considerably harder. The complete re-

ductions for Grunert’s method, as well as a few related

methods, are detailed in [6].

For fixed d1, d2, d3, consider the rational transfor-

mation (r1, r2, r3) 7→ (c1, c2, c3) via

c1 =
r22 + r23 − d21

2r2r3
, c2 =

r23 + r21 − d22
2r3r1

,

c3 =
r21 + r22 − d23

2r1r2
, (4)

obtained by solving (1) for the cj . When this is used

to express the cj in terms of the rj and dj , the polyno-

mial S becomes a rational function of the Rj and Dj .

Specifically,

S =
Ω2H

256R4
1R

4
2R

4
3

, (5)

where

Ω = D1D2D3 + (D1 +D2 −D3)R1R2

+ (D2 +D3 −D1)R2R3 + (D3 +D1 −D2)R3R1

− D1R
2
1 −D2R

2
2 −D3R

2
3,

(6)

and where H is a complicated polynomial in D1, D2,

D3, R1, R2 and R3. Moreover, the Jacobian determi-

nant of the transformation (4) is

J =

∂c1
∂r1

∂c1
∂r2

∂c1
∂r3

∂c2
∂r1

∂c2
∂r2

∂c2
∂r3

∂c3
∂r1

∂c3
∂r2

∂c3
∂r3

=
Ω

4 r31r
3
2r

3
3

. (7)

1 The computations required here and elsewhere in this article

are quite tedious, and best checked using mathematical manipu-
lation software, such as Mathematica R© or MapleTM. A Mathe-

matica notebook is available from the author upon request.

1.2 Double Solutions

Repeated roots to the quartic polynomial in (2) occur

if and only if ∆ = 0. But ∆ = 0 if and only if one

of the factors in the factorization (3) is zero. It turns

out, however, that a repeated solution to (1), meaning

coalescing solutions having the same values of R1, R2

and R3, occurs if and only if S = 0, which occurs if and

only if there is a solution for which the camera’s CoP

is on the danger cylinder.

Now, S = 0 if and only if Ω = 0 or H = 0. Again,

S = 0 is a necessary and sufficient condition for a re-

peated solution to exist. Ω = 0 means that the solution

being considered in the formula for Ω is a repeated so-

lution. It turns out that the condition H = 0 means

that two other solutions to (1), for the same values of

c1, c2 and c3, coalesce to form a double solution.

In addition, by (7), the Jacobian J vanishes if and

only ifΩ does, and when this occurs, the transformation

(4) is no longer locally invertible. This makes recover-

ing the values of r1, r2 and r3 more complicated, given

the values of c1, c2, c3, d1, d2 and d3. Even when J is

nonzero but is small, methods for finding r1, r2 and r3
become quite prone to round-off errors.

If there is a reason to suspect that the CoP is on

or sufficiently near the danger cylinder, then it might

be reasoned that methods like Grunert’s cannot be re-

lied on to accurately find the solution. Instead, the al-

gorithm in the next subsection (DSA) can be used to

more accurately find a double solution or at least find

a number very close to two nearly equal solutions.

It is important to have a practical procedure to

flag when the CoP has come too close to the danger

cylinder. It must be assumed that in using Grunert’s

method, some good procedure already exists for select-

ing the appropriate solution from among the several

solutions yielded by this method. We must depend on

Grunert (or a similar method) to provide fairly accu-

rate values for r1, r2, r3. The selection could be based

on using a history of the tracking in order to assign a

likelihood of being correct to each of these solutions.

Now, to decide if the camera has wandered too close

to the danger cylinder, a check might be made to see

if two highly likely solutions are sufficiently close to-

gether. A superior alternative to this test, according to

experiments discussed in Subsection 2.2, is to focus on

the quantity J , and detect when this is sufficiently small

so as to warrant triggering the use of DSA. Actually,

in the experiments in Section 2.2, a variation of this

turned out to be more useful, namely, criterion (8).
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2 The Double Solution Algorithm (DSA)

The algorithm to be presented, for finding a repeated

solution to P3P, was motivated by the algorithm pre-

sented in [13], for the special case where the control

points are the vertices of an equilateral triangle. Now

though, we are considering a general setup for the per-

spective three-point pose problem, and the algorithm is

quite different. However, both algorithms are based on

detailed analyses of the transformation (4), restricted

to the danger cylinder, and they share a number of

aspects. At the risk of creating a little confusion, the

author feels that the present algorithm should also be

called the “Double Solution Algorithm,” and when nec-

essary, context can supply a distinction between this

algorithm and the one in [13].

2.1 Algorithm Specification

The present algorithm splits into two parts, the first of

which, called “Preprocess,” depends only on a knowl-

edge of the separation distances between the control

points. As long as these points remain fixed, this part

of the algorithm only needs to be performed once.

The second part, called “Main”, needs to be exe-

cuted each time the cosines c1, c2, and c3 are measured,

in the case of a moving camera taking repeated mea-

surements. It is assumed that Main has access to all the

information produced by Preprocess.

Here now are the algorithm details:

Preprocess

1. Receive (d1, d2, d3) as input.

2. With D1 = d21, D2 = d22, D3 = d23, compute 2r2 for

the circumradius r, using (11).

3. Rescale by replacing (D1, D2, D3) with (D1, D2, D3)

divide by 2r2.

4. Set v1 = 1−D2, v2 = 1−D1, v3 = 1, w1 =
√

1− v21 ,

w2 = ±
√

1− v22 , and w3 = 0. The sign for w2 is

chosen to make v1v2 + w1w2 = 1−D3.

5. Set t1 = w1/(1 + v1), t2 = w2/(1 + v2), t3 = 0, s1 =

t1 + t2, s2 = t1t2 and s3 = 0.

6. Compute κ, ζ, ζ̄, λ′, λ′′ and λ′′′, using (21), (24) and

(25).

7. Setting λ = λ′, λ′′, λ′′′, successively, compute quin-

tuples (µ′, ν′, γ′1, γ′2, γ′3), (µ′′, ν′′, γ′′1 , γ′′2 , γ′′3 ) and

(µ′′′, ν′′′, γ′′′1 , γ′′′2 , γ′′′3 ), as the corresponding values

for (µ, ν, γ1, γ2, γ3), using (22) and (23).

8. Compute β0 as in Fact 3 in Section 3.

9. Return all the values computed here.

Fig. 1 DSA usage percentages for two techniques

Main

1. Receive (c1, c2, c3) as input.

2. Compute c21, c
2
2, c

2
3, τ and T . (See (3).)

3. Successively compute ρ(−β0−γ1−γ2−γ3, β0, γ1, γ2,
γ3; t1, t2, t3; t, u), using (20), for the three values of

the triplet (γ1, γ2, γ3) produced in Step 7 of Prepro-

cess. Call the resulting values ρ′, ρ′′ and ρ′′′.

4. Consider the three pairs of quadratic equations in

(27). For each combination of a choice from each

pair, test to see it the resulting system of three

quadratic equations has a common root, as discussed

at the end of the Section 3. For the combination that

produces a common root, set t to equal this root.

5. Using Facts 4 and 7 in Section 3, compute the ap-

propriate ρ(· · ·), using the known values for t1, t2,

t3 and t.

6. Solve the resulting quadratic equation for u.

7. Compute R1, R2 and R3 using (16) and similar for-
mulas.

8. Rescale by replacing (R1, R2, R3) with (R1, R2, R3)

multiplied by 2r2.

9. Compute r1 =
√
R1, r2 =

√
R2 and r3 =

√
R3.

10. Return (r1, r2, r3).

Step 4 in Main assumes the CoP is on the danger cylin-

der. However, when this is only approximately the case,

then t needs to be set to an approximate common root

instead, as discussed in Subsection 3.3. No root extrac-

tions are required in this step. In fact, root extractions

only occur in Steps 6 and 9, and these are just square

roots.

2.2 Experimental Results

Extensive simulations were conducted to compare DSA

against Grunert’s method, using single precision float-
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Fig. 2 Average error amounts for three techniques

ing point data. 2 Triangles were randomly generated

and oriented, and placed so that the triangle’s plane

was at a prescribed distance from the CoP, using dis-

tances of 5, 10, 15, 20 and 25 meters. The vertices of a

triangle served as control points during applications of

Grunert’s method and the DSA method.

While triangles of various shapes were checked, the

figures presented here are based on data collected for

triangles having one side randomly set between 4 and

6 meters, another side randomly set between 5 and 7

meters, and the remaining side randomly set between

6 and 8 meters. For each triangle, a random point on

the danger cylinder was chosen, and the methods were

tested with the CoP placed somewhere along a one-

meter-long line segment, centered at the random point.

For placement of the CoP, one hundred equally-spaced

locations along the segment (extending to the ends)

were each used in succession, and the results from these

locations averaged. These averages were then averaged

over the random triangles.

First Grunert’s method was used. Based on the re-

sults, a criterion was applied to decide whether or not

switching to the DSA method was warranted. Several

possible criteria were explored. The results presented in

the figures are based on the seemingly arbitrary crite-

rion

|Ω| < 0.2 (R1 +R2 +R3)2. (8)

This worked reasonably well for the triangles tested

here, and for the wide range of distances between these

and the CoP. No explanation for why this was a suc-

cessful criterion is offered.

More specifically, the plots in the figures labeled “ac-

tual” represent data collected when this criterion was

used to decide. The plot labeled “no DSA” is based

on strictly using Grunert’s method without potentially

2 The source code for the C++ program used for data collec-

tion and analysis is available from the author upon request

switching to DSA. The plots labeled “ideal” show what

would happen if a perfect criterion was available for de-

ciding whether or not to use DSA in favor of Grunert.

In this case, both methods were always executed and

compared, and the better result was always chosen.

As said, these experiments began by checking the

method of Grunert, which can result in the need to

select the best solution from up to four solutions to

the system of equations (1). In practice, this remains a

tricky issue, which can be addressed by using a tracking

history to predict the likelihood of correctness for each

of these solutions. This problem is not addressed in this

paper, and the experiments performed were based on

the assumption of always making this choice correctly.

Figure 1 indicates the percentage of times that the

DSA was selected for use and its results used in place of

Grunert’s method. As said, the “actual” plot is based

on using DSA if and only if (8) is satisfied. By con-

trast, the “ideal” plot shows the percentage of times

that DSA should be used, because it actually produced

better results.

Figure 2 records average error measurements. This

measurement is the sum of squared distances between

the three actual control points and their predicted po-

sitions in space (relative to the CoP), based on the

method used to solve the system (1). When DSA was

not used at all, this error grew very large as the CoP was

located at increasing distances from the control points.

Also, when the distance between the CoP and the plane

containing the control points was 20 meters, the crite-

rion (8) gave results that were extremely close to ideal.

This did not continue at further distances, however.

Using the timing features of C++, it was found

that DSA did not impose an unreasonable performance

penalty. In the “ideal” experiments, where both the

method of Grunert and DSA are always used, it was

found that no more than a sixty percent performance

penalty was experienced, as compared with using only

Grunert’s method. Of course the delay caused by an

“actual” experiment would depend (linearly) on the

percentage of times that DSA is actually used. The

simple criterion test (8) imposes only an insignificant

delay.

3 Mathematical Analysis

3.1 The Danger Cylinder and Rationalization

The analysis here begins by choosing a rectangular co-

ordinate system such that the three control points are

located at coordinates (r cos θj , r sin θj , 0), for j = 1, 2, 3.

Assuming the camera’s CoP to be on the danger cylin-
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der, its coordinates are (r cos θ, r sin θ, z) for some θ and

z. Now,

D1 = d21 = r2(cos θ2 − cos θ3)2 + r2(sin θ2 − sin θ3)2

= 2r2 [1− cos(θ2 − θ3)] = 4r2 sin2

(
θ2 − θ3

2

)
. (9)

Similarly for D2 and D3. Likewise,

R1 = r21 = r2(cos θ − cos θ1)2 + r2(sin θ − sin θ1)2 + z2

= 2r2 [1− cos(θ − θ1)] + z2 = 4r2 sin2

(
θ − θ1

2

)
+ z2,

(10)

and similarly for R2 and R3.

d1, d2, d3 and r are of course dependent. In fact, a

standard formula for the circumradius of a triangle tells

us that

r2 =
D1D2D3

2D1D2 + 2D2D3 + 2D3D1 −D2
1 −D2

2 −D2
3

(11)

By rescaling, there is no harm in assuming that r =

1/
√

2, so that 2r2 = 1. This assumption will henceforth

be imposed. If we set u = z2, v = cos θ, w = sin θ,

vj = cos θj , and wj = sin θj (j = 1, 2, 3), then the Dj

and Rj can be expressed as polynomials in these, as

follows:

D1 = 1− v2v3 − w2w3, D2 = 1− v3v1 − w3w1,

D3 = 1− v1v2 − w1w2, and (12)

R1 = 1− v1v − w1w + u, R2 = 1− v2v − w2w + u,

R3 = 1− v3v − w3w + u. (13)

However, v and w are not independent, and of course

are related by v2 + w2 = 1. Similarly for vj and wj

(j = 1, 2, 3). These dependencies complicate the manip-

ulation of expressions involving these quantities when

using mathematical manipulation software to explore

long combinations. Fortunately, the situation can be

easily remedied, by leveraging a standard rational pa-

rameterization of the unit circle. Specifically, new sym-

bols t1, t2, t3 and t can be introduced, as independent

variables/parameters, and we can set

v =
1− t2

1 + t2
, w =

2t

1 + t2
, (14)

vj =
1− t2j
1 + t2j

, wj =
2tj

1 + t2j
(j = 1, 2, 3).

Notice that t = w/(1 + v) and tj = wj/(1 + vj),

which can be used to set the parameters t1, t2 and t3,

from a knowledge of the separation distances d1, d2 and

d3. There is some flexibility though in the choice of the

coordinate system. We may assume, for instance, that

the third control point is on the positive half of the x-

axis, whence v3 = 1, w3 = 0, v1 = 1 − D2 and v2 =

1 − D1. The DSA algorithm makes this assumption.

In this section though, the points will be kept general,

to exhibit the symmetry in t1, t2 and t3. The following

formulas are straightforward to deduce:

D1 =
2(t2 − t3)2

(1 + t22)(1 + t23)
, (15)

R1 =
(1 + t21)(1 + t2)u+ 2(t− t1)2

(1 + t21)(1 + t2)
(16)

By symmetry, there are similar formulas for D2, D3, R2

and R3. From these, we obtain

R2 +R3 −D1 = (17)

2(1 + t22)(1 + t23)(1 + t2)u+ 4(1 + t2t3)(t− t2)(t− t3)

(1 + t22)(1 + t23)(1 + t2)
,

and similar formulas for R3+R1−D2 and R1+R2−D3.

Since c21 = (R2 +R3 −D1)2 / (4R2R3), etc., we obtain

c21 = (18)[
(1 + t22)(1 + t23)(1 + t2)u+ 2(1 + t2t3)(t− t2)(t− t3)

]2
/ { (1 + t22)

[
(1 + t22)(1 + t2)u+ 2(t− t2)2

]
· (1 + t23)

[
(1 + t23)(1 + t2)u+ 2(t− t3)2

]
} ,

and so forth. Now, τ = (R2 +R3 −D1)(R3 +R1 −D2)

(R1 +R2 −D3) / (8R1R2R3), so we also have

τ = (19)[
(1 + t22)(1 + t23)(1 + t2)u+ 2(1 + t2t3)(t− t2)(t− t3)

]
·
[
(1 + t23)(1 + t21)(1 + t2)u+ 2(1 + t3t1)(t− t3)(t− t1)

]
·
[
(1 + t21)(1 + t22)(1 + t2)u+ 2(1 + t1t2)(t− t1)(t− t2)

]
/ { (1 + t21)

[
(1 + t21)(1 + t2)u+ 2(t− t1)2

]
· (1 + t22)

[
(1 + t22)(1 + t2)u+ 2(t− t2)2

]
· (1 + t23)

[
(1 + t23)(1 + t2)u+ 2(t− t3)2

]
}.

The formulas encountered henceforth grow consid-

erably in complexity. Without mathematical manipula-

tion software, the final results seem to be too tedious

to derive “by hand.” Therefore, no proofs are offered

for the correctness of the subsequent formulas. However,

the discussion should hopefully provides a clear sense

of how the formulas can be reproduced. In addition,

thorough and separate testings of DSA, using Mathe-

matica and C++, strongly supports the claim for the

correctness of the formulas, and for the methodology

presented here.
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3.2 The “Ratio Function” ρ

Going forward, we will focus on certain rational combi-

nations of c21, c
2
2, c

2
3 and τ (= c1c2c3). As just seen, all

four of these quantities in turn have rational expressions

in terms of t1, t2, t3, t and u, so that we will ultimately

be concerned with rational functions of these. It will be

helpful to introduce the elementary symmetric polyno-

mials s1 = t1+t2+t3, s2 = t1t2+t2t3+t3t1, s3 = t1t2t3.

Recall too that T = 1 + 2τ − c21 − c22 − c23.

The following rational function was motivated by

the analysis developed in [13] for the equilateral-triangle

case. It has proven to be very useful for the general case,

though this is much more complicated. Define the ratio

function

ρ (α, β, γ1, γ2, γ3; t1, t2, t3; t, u) =

α+ βτ + γ1c
2
1 + γ2c

2
2 + γ3c

2
3

T
. (20)

For fixed α, β, γ1, γ2 and γ3, this quantity can be

viewed alternatively as a rational function of t1, t2, t3, t

and u, or as a rational function of τ, c21, c
2
2 and c23. Due to

the latter expression, for specific choices of the param-

eters α, β, γ1, γ2 and γ3, its value becomes immediately

available once the cosines c1, c2 and c3 are measured.

In fact, we shall soon restrict to special values of the

parameters which being known a priori (based on an a

priori knowledge of t1, t2, t3) combine with a knowledge

of the measured cosines, so as to enable the determina-

tion of the values of the unknowns t and u, and thence

v, w,R1, R2 and R3. This provides the foundation of

the Double Solution Algorithm that was presented in

the previous section.

We begin with some interesting observations con-

cerning the ratio function, which were discovered using

mathematical manipulation software.

Facts concerning ρ

1. ρ (α, β, γ1, γ2, γ3; t1, t2, t3; t, u), as a function of the

variables t and u, has a numerator containing non-

zero terms corresponding only to these monomials:

1, t, t2, t3, t4, t5, t6, u, ut, ut2, ut3, ut4, ut5, ut6,

u2, u2t, u2t2, u2t3, u2t4, u2t5, u2t6, u3, u3t2, u3t4,

u3t6.

2. When α + β + γ1 + γ2 + γ3 = 0, the terms in the

numerator corresponding to these monomials vanish

as well: u2t, u2t3, u2t5, u3, u3t2, u3t4, u3t6.

3. When additionally β = [ (1+t21)(t2−t3)2γ1+(1+t22)

(t3 − t1)2γ2 + (1 + t23)(t1 − t2)2γ3 ] / [ 3s1s3 − s21 −
s22 + 3s2 ], the only non-zero terms in the numerator

correspond to these monomials: u, ut, ut2, ut3, ut4,

ut5, ut6. (Call the value of β in this case β0.)

4. When α = −(1 + t1t2)(1 + t2t3)(1 + t3t1), β =

(1 + t21)(1 + t22)(1 + t23), and γ1 = γ2 = γ3 = 0, the

only non-zero terms in the numerator correspond to

these monomials: u, ut, ut2, ut3, ut4, u2, u2t, u2t2,

u2t3, u2t4, u3, u3t2, u3t4.

5. The denominator of ρ (α, β, γ1, γ2, γ3; t1, t2, t3; t, u)

is 4(t1 − t2)2(t2 − t3)2(t3 − t1)2 (1 + t2)3 u.

6. In the case described in Fact 3, (1 + t2)u is a factor

of the numerator, which thus cancels with a corre-

sponding factor in the denominator. This eliminates

u, leaving a quartic in t divided by a constant times

(1− t2)2. (The constant depends on t1, t2, t3.)

7. In the case described in Fact 4, u cancels out be-

tween the numerator and denominator. If values are

now supplied for t1, t2, t3 and t, then the result is a

quadratic polynomial in u.

3.3 Discovering t and u

Fact 7 can be of use in determining u once t has been

determined – just solve a quadratic equation. Addi-

tionally, Fact 6 suggests a strategy for discovering the

value of t. The difficulty however is that even though

the value of ρ(· · ·) is knowable, being easily determined

from c1, c2 and c3, when this is used together with Fact

6, we still seem to need to solve a quartic equation, in

order to obtain t. Not so! This is because we have lib-

erty in choosing the values for γ1, γ2, γ3, and it turns

out that these can be selected so as to make the numer-

ator become the square of a quadratic. In fact, this can

be accomplished in three distinct ways.

Consider the equation whose left side is the numera-

tor of ρ (−β0−γ1−γ2−γ3, β0, γ1, γ2, γ3; t1, t2, t3; t, u)
(expressed in terms of t1, t2, t3, t, u), and whose right

side is (t2 + µt + ν)2, for unknowns µ and ν. Equat-

ing the coefficients of t, we obtain five equations in the

unknowns γ1, γ2, γ3, µ and ν. Using elimination, it is

possible to reduce this to a cubic equation in µ, with

positive discriminant (108[s1 − s3]4[1 + s21 − 2s2 + s22 −
2s1s3+s23]2). Consequently, there are three distinct real-

valued choices for µ, though when limited to only ex-

tracting radicals, they must be expressed as combina-

tions of complex numbers (casus irreducibilis, cf. [18,

pp.189-190]).

Since the five equations are linear in γ1, γ2, γ3, row

reduction can be used to write each of these in terms of

µ and ν. Moreover, it turns out that after eliminating

γ1, γ2, γ3, it is possible to produce an equation involving

µ and ν that only involves ν linearly. Letting

κ = (t1 − t2)(t2 − t3)(t3 − t1)(3s1s3 − s22 − s21 + 3s2),

(21)
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and noting that the denominator of ρ(· · ·) is κ (1+ t2)2,

one discovers that

(22)

ν =
(s2 − 1)[ (s3 − s1)µ2 − 3(s2 − 1)µ− 2(s3 − s1) ]

(s3 − s1)[ (s3 − s1)µ− 2(s2 − 1) ]
,

γ1 =

−2t1(1 + t21)(t2 + t3)2 µν

+ t1(s2 − 1)[ s3 − t1 + (t21 + 2)(t2 + t3) ] ν2

+ (t2t3 − t3t1 − t1t2 − 1)(s2 − 1)

(t21 + 1)(s2 − 1)2 κ
,

γ2 =

−2t2(1 + t22)(t3 + t1)2 µν

+ t2(s2 − 1)[ s3 − t2 + (t22 + 2)(t3 + t1) ] ν2

+ (t3t1 − t1t2 − t2t3 − 1)(s2 − 1)

(t22 + 1)(s2 − 1)2 κ
,

γ3 =

−2t3(1 + t23)(t1 + t2)2 µν

+ t3(s2 − 1)[ s3 − t3 + (t23 + 2)(t1 + t2) ] ν2

+ (t1t2 − t2t3 − t3t1 − 1)(s2 − 1)

(t33 + 1)(s2 − 1)2 κ
.

The cubic equation for µ can be put in the form

λ3 + pλ+ q = 0 , (23)

where

λ = µ+
2(s2 − 1)

s1 − s3
, q =

2(s2 − 1)p

3(s1 − s3)
and

p =
−3(1 + s21 − 2s2 + s22 − 2s1s3 + s23)

(s1 − s3)2
.

Setting

ζ = [−(1 + it1)(1 + it2)(1 + it3)]1/3

= [s2 − 1 + (s3 − s1) i ]1/3

and (24)

ζ̄ = [−(1− it1)(1− it2)(1− it3)]1/3

= [s2 − 1 + (s1 − s3) i ]1/3

the roots of this cubic are found to be

λ′ =
ζ ζ̄ (ζ + ζ̄)

s1 − s3
, λ′′ =

ζ ζ̄ [(1−
√
−3) ζ + (1 +

√
−3) ζ̄]

2(s3 − s1)

and λ′′′ =
ζ ζ̄ [(1 +

√
−3) ζ + (1−

√
−3) ζ̄]

2(s3 − s1)
. (25)

For each of the three values for λ, corresponding val-

ues of µ, ν, γ1, γ2 and γ3 are then uniquely determined.

Let us call the resulting quintuples of values (µ′, ν′, γ′1,

γ′2, γ′3), (µ′′, ν′′, γ′′1 , γ′′2 , γ′′3 ) and (µ′′′, ν′′′, γ′′′1 , γ′′′2 ,

γ′′′3 ). It is important to notice that all of these values

can be computed with only a knowledge of d1, d2 and

d3. These computations can precede the acquisition of

the data (c1, c2, c3) from the camera image, and only

need to be performed once, as long as the control points

remain fixed.

Now, once the values of c1, c2 and c3 are acquired,

three different ρ(· · ·) values can be computed, using

the three different settings for the triple (γ1, γ2, γ3) ob-

tained above, and setting β = β0 and α = −β0 − γ1 −
γ2−γ3. Calling the resulting values ρ′, ρ′′ and ρ′′′, three

equations emerge:

(t2 + µ′t+ ν′)2 = κ ρ′ (1 + t2)2,

(t2 + µ′′t+ ν′′)2 = κ ρ′′ (1 + t2)2,

(t2 + µ′′′t+ ν′′′)2 = κ ρ′′′ (1 + t2)2.

(26)

Thus,

t2 + µ′t+ ν′ = ±
√
κρ′ (1 + t2),

t2 + µ′′t+ ν′′ = ±
√
κρ′′ (1 + t2),

t2 + µ′′′t+ ν′′′ = ±
√
κρ′′′ (1 + t2).

(27)

There are three pairs of quadratic equations here.

Some selection of an equation from each pair must re-

sult in a system of three equations with a simulta-

neous solution. Given any two quadratic equations, it

is easy to test whether or not they have a common

root, using standard linear elimination methods. Specif-

ically, at2 + bt + c and dt2 + et + f (with bd 6= ae and

af 6= cd) have a common root if and only if (af −
cd)2 = (bd − ae)(ce − bf), in which case the common

root is (af − cd) / (bd − ae). Moreover, the quantity

|(af − cd)2− (bd−ae)(ce− bf)| can be used as a metric

for checking how close two quadratics are to having a

common root.

This provides a fast technique for deciding which

three of the above six equations to select, and for de-

termining their common (or nearly common) root. In

this way, we can quickly obtain the correct value of t.

From this, u can be quickly obtained as well, using Fact

7, as mentioned earlier. So R1, R2 and R3 are now de-

termined, by (16) and similar formulas.

4 Conclusion

A detailed algorithm (DSA) has been introduced for

better handling the perspective three-point pose prob-

lem, when the camera is on or near the danger cylin-

der. Experimental results confirm that DSA can be dra-

matically more accurate than a certain traditional ap-

proaches, particularly at long distances. Simple criteria

for reasonably deciding when and when not to use DSA

have been seen to be possible. However, further explo-

ration of this aspect of DSA is needed.

In analyzing the difficulties presented by the dan-

ger cylinder, and overcoming these, it was very useful

to “rationalize” the problem (by introducing t1, t2, t3
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and t), and to focus on a particular parameterized ra-

tional function (the “ratio function”). This analysis ul-

timately suggested DSA, and demonstrates its correct-

ness. However, it involved somewhat tedious derivations

that were made using mathematical manipulation soft-

ware. It would be highly desirable to discover a more

intuitive way of arriving at the same (or better) results.

Possibly this could result from a better geometric sense

of the equations obtained here.
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