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Abstract

Two very different, yet related, triangle constructions are examined, based on a
given reference triangle and on a triple of signed angles. These produce triangles that
are in perspective with the reference triangle and with each other, using the same
center of perspective. The first construction is rather well-known, and produces a
Kiepert-Morley-Hofstadter-Kimberling triangle. A new circumconic is associated with
this construction. The second construction generalizes work of D. M. Bailey and J.
Van Yzeren. A number of known central triangles are obtainable using one or both of
these constructions.

1 Introduction

This article is concerned with two very different triangle constructions based on a given
reference triangle. Each of these is also based an a triple of signed angles (11,15, ¥3). These
two constructions produce triangles that are in perspective with the reference triangle and
with each other, using the same point of perspective. If it happens that ¥; 4+ ¥y + 13 = 0
(mod 7), then the point of perspective will just be the point whose angular coordinates are
(11,19, 13). The first construction is rather well-known, and produces the Kiepert-Morley-
Hofstadter-Kimberling (KMHK) triangle, with 1, 15 and 13 serving as the swing angles.
The second construction generalizes work of D. M. Bailey [I] and J. Van Yzeren [7]. It
focuses attention on a certain triple of circles, where each circle passes through two of the
reference triangle vertices.

Section 2 carefully introduces the notions of “directed angles” and “angular coordinates,”
in the sense in which we will be using these phrases. Section 3 details the construction of a
Kiepert-Morley-Hofstadter-Kimberling triangle. Most of this material is admittedly already
presented adequately in Chapter 6 of [4]. However, there is a result at the end of Section 3
here that appears to be new. Section 4 details our extension of [I] and [7], and this results
in the construction of another triangle, as mentioned earlier.

In Section 5, straightforward methods are presented for testing the trilinear coordinates
of a given triangle to determine whether or not it can be obtained by means of one of the
two constructions. In Section 6, the results of thus testing the examples of central triangles
in [4] are presented. Many of these central triangles passed one or both of these tests. Some



of these central triangle were known already to be thus obtainable, but some of the results
appear to be new.

2 Directed Angles and Angular Coordinates

We will require the following definition. Let A, B, and P be points in the plane. Define
the directed angle £ APB to be the angle through which the line j@ can be rotated about
P to coincide with the line . The angle is signed, with positive values indicating coun-
terclockwise rotation, and is only well-defined modulo 7. Any equation involving directed
angles should be considered modulo 7. We will fix a triangle AABC' with circumcenter O
and circumradius R and with A, B, and C not collinear. The interior angles at A, B, and
C will be denoted by 6, 65, and 605, respectively.

Having fixed the triangle AABC, define the angular coordinates of a point P to be the
triple (1, ¢o, ¢3) of directed angles where

¢ = LBPC, ¢y = LCPA, ¢3 = LAPB. (2.1)

Remark 2.1. This agrees with Yzeren’s definition in [7]. Some sources (e.g. [2, Chapter II],
[6]) define angular coordinates only for points inside AABC' in terms of absolute angles.
Clearly ¢1 + ¢2 + ¢35 = 0 (mod 7).

Observe that the inscribed angle theorem can be written in terms of directed angles as
follows:

Lemma 2.2. Let A, B, P, and () be points in the plane. Then A, B, P, and Q) are concyclic
if and only if LAPB = £AQB if and only if {PAQ = £{PBQ).

Proof. This follows from the traditional inscribed angle theorem along with the following
consideration: If P and (Q are on opposite sides of a chord AB of a circle, then ZAPB =
m — ZAQB. But the directed angles {APB and £ AQB must have opposite orientation in
this case, so LAPB =7+ LAQB = LAQB. H

The following lemma is a direct consequence of Lemma 1.6 and Corollary 2.8 of [5], so
we omit the proof. It also follows from a result in [2, Chapter II], but only for the case that
P is inside AABC. The condition that P is not on the circumcircle or sidelines is equivalent
to the condition that ¢; # 0, §; for each i.

Lemma 2.3. Suppose P is not on the circumcircle or sidelines of AABC, and that P has
angular coordinates (¢1, ¢a, ¢3). Then P has homogeneous trilinear coordinates

sin(¢)  sin(¢p)  sin(¢s)
sin(f; — ¢1) sin(fy — ¢o) sin(fs — ¢3) |

Remark 2.4. Note that the collection of points P having first angular coordinate ¢, forms a
circle through B and C; it follows that the signed distance from P to the sideline % cannot
depend on ¢, alone. Nevertheless, the homogeneous trilinear coordinates have this property.
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3 The First Triangle Construction

Let us begin by reexamining the construction presented in [4]. This is a generalization of the
construction in [3] that is used to define Hofstadter points. Using a reference triangle AABC
(with directed interior angles 61,05, 63), and given a triple of directed angles (11,9, 13),
another triangle AA’B'C’ is produced that is in perspective to AABC. We refer to this
resulting triangle as the Kiepert-Morley-Hofstadter-Kimberling triangle. This triangle and
the following theorem are illustrated in [Fig. 1 (The figure also contains some red circles and
their intersections that should be ignored for the moment.)

.
A’

Figure 1: The two constructions

Theorem 3.1. Let (11, 12, 13) be any triple of directed angles such that 1; # 0,0;. Let A,
B’, and C' be the points satisfying

ABAC' = LB'AC = 1,
KCBA' = £C'BA = oy,
LACB' = LA'CB = s,

Then
(i) AA", BB', and CC" are concurrent, meeting in a point P;
(ii) the homogeneous trilinear coordinates of the point A" are

sin ¢2 sin ?/)3 sin 7,02 . sin ¢3 (3 1)

sin(Qg — 1/}2) sin(93 — ¢3) ) sin(92 — 77[)2) ’ sin(03 — ¢3)

and similarly for B' and C'; and




(iii) P has homogeneous trilinear coordinates

sin i . sin 99 . sin g
sin(f) — 1)~ sin(fy — ) sin(f3 — v3)

Proof. We here follow the same reasoning as in [3]. First, note that a given line through A,
B, or C' includes all points with some fixed ratio of trilinear coordinates [¢s : 3], [ : {5], or

[01 : £5], respectively. Points on C'A" satisfy

[0y 2 €o] = [sinez @ sin(03 — 93) |

: S
and points on BA’ satisfy

[01 : l5] = [siney @ sin(fy — 1) .
Hence A’ has the homogeneous trilinear coordinates claimed in (ii). Moreover, A’ satisfies
[y : U] = [sinhy sin(f3 — 1b3) : sinhz sin(fy — o) . (3.2)

>
The other points on AA’” must also have this ratio of trilinear coordinates. Analogous rea-
soning shows that BB’ is given by

[y : ls] = [siny sin(f5 — 1b3) = sinhssin(6y — 1) | (3.3)
S—

and CC" is given by

[€1 2 o] = [sinepy sin(f — ¢2) @ singhsin(fy — 1) J. (3.4)
The point P with the homogeneous trilinear coordinates given in (iii) satisﬁe(isa(ig)f
Eq. (3.2), [Eq. (3.3)} and |Eq. (3.4), so it must be the common intersection of AA’, BB’,
and C'C’, thus establishing (i). O
Remark 3.2. In the case that 1y = —1)3, the lines which would intersect to form A’ are

parallel. In this case the expression gives the <liﬂe> through A parallel to both of
these, and the proof continues with this line in place of AA’. The same principle holds for
B’ and C".

Remark 3.3. In the case that ¢ = r0 and r # 0, 1, this construction yields the Hofstadter
r-point, as defined in [3].

If Yy = 1py = b3 = —7/3, then P is the first isogonic center. If ¢ = 1py = 93 = 7/3, then
P is the second isogonic center. By [Theorem 3.1 it follows that the angular coordinates of the
first and second isogonic centers are (—n/3,—m/3, —mw/3) and (7/3,7/3,7/3), respectively.

If » = 0/2, then P is the incenter I. It does not follow that the angular coordinates of T
are 1 = /2, because in this case 11 + ¥ + 103 # 0. Indeed, it is straightforward to deduce
that the angular coordinates of I are in fact ¢ = (0 4+ 7)/2 (and therefore repeating the
construction using these angles still produces the incenter 7).

The following result, illustrated in |Fig. 2| and |[Fig. 3| appears to be new.
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Figure 2: A cevian triangle from a KMHK triangle

Theorem 3.4. Let AAB'C’ be a KMHK triangle %th respect to AABC'). The orthogonal

projections D, E, F of A', B',C" onto the sidelines &)4, j@ are the vertices of a cevian
triangle (with respect to AABC'). Letting QQ denote its center of perspective, if P is held fized,
but A’, B',C" are allowed to vary, then the point QQ traces out a circumconic of AABC.

Proof. Using formulas from [4], if [£ : m : n] are the trilinear parameters for the line m,
then ¢ = m cos 03 + n cos 0y (perpendicular lines), and ¢ sin ¢, sin ¥3 + m sin ¢y sin(f3 — ¥3) +
n sin 13 sin(fy —19) = 0 (line contains A’). So, m sin ¥, cos 15 sin f34n sin Y3 cos P, sin fy = 0,
and we may thus take m = sin 3 cos ¥, sin 6y and n = — sin 1, cos 13 sin 0.

Letting [0 : p : v] be the trilinear coordinates for D, we may take p = sin 63 cot 13 and
v = sinfycoty. The line jﬁ has trilinear parameters [0 : v : —pu]. Similarly for the
lines ﬁ and W . These three lines intersect at a point () whose trilinear coordinates are
[csc By tan )y @ csc by tanthy @ csc O3 tan g |.

If we let (¢1, ¢2, ¢3) be the angular coordinates of P, then its trilinear coordinates are

[sin ¢/ sin(0y — ¢1) : sin ¢/ sin(fy — @) : sin ¢y / sin(fy — @) | =
[siny/sin(fy — 1) @ sineg/ sin(0y — 1)9) = sinhy/ sin(fy — o) .
Therefore, there is a parameter A such that, for ¢ = 1,2, 3,

sin ¢; sin ¢;

sin(0; —¢;) " sin(0; — ;)
The i-th trilinear coordinate of @ thus becomes 1 /[Asin6; cot ¢; + (1 — A) cosb; |, and

the isogonal conjugate @' of Q has i-th trilinear coordinate Asin 6;cot ¢; + (1 — \) cos ;.
Varying )\, we see that Q~! traces out a line, and therefore ) traces out a circumconic. [

, and so coty; = Acot ¢; + (1 — \) cot 6.
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Figure 3: A circumconic associated with the KMHK construction

Fig. 3| illustrates this circumconic, which is a circumhyperbola here. With P fixed, as
A’, B, C" are allowed to vary, the point ) moves along the green curve, which is the circum-
hyperbola.

4 The Second Triangle Construction

Our second triangle construction generalizes a construction studied in [I], [5], [6] and [7].
These studies all essentially concern an arbitrary point P, and the three circles through P
that also pass through two of the reference triangle vertices. We will instead begin with the
reference triangle AABC, and with a triple of directed angles (11,19, %3), as we did in the
first construction.

Starting with the triple of directed angles, construct three circles as follows: Let P be
any point for which £ BPC' = 1, and let Cx denote the circle BPC. By [Lemma 2.2} this
construction is well-defined. Using C' and A (resp. A and B) in place of B and C, we
obtain a circle Cy (resp. Cz). Finally, let X, Y, and Z denote the centers of Cx, Cy and Cz,
respectively.

If the three circles Cx, Cy, and Cz have a common point of intersection, then by definition
that point has angular coordinates (1, 19,13) and so 1 + s + 13 = 0 (mod 7). We do
not assume, however, that our original triple of directed angles satisfies this equation, and
so the three circles do not generally have a common point of intersection.

Let A” (resp. B”, resp. C") be the point of intersection of Cy and Cz (resp. Cz and Cy,
resp. Cx and Cy), other than A (resp. B, resp. C). shows these circles and their
intersections, and also illustrates the theorem to be presented concerning these.

Theorem 4.1. For a triangle AABC, and for a triple of directed angles (11, 19,13) such
that ¥; # 0,0;, let A”, B",C" be the circle intersection points considered above. Let A, B', C’

be the points in|Theorem 5.1. Then
(i) A, A" and A" are collinear, as are B, B' and B", as are C, C" and C";
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(ii) the homogeneous trilinear coordinates of the point A" are

sin(ty + 13) o osin(yn)  sin(ys)
SiIl(wQ + lpg — 92 - 93) . SiH(QQ - 1#2) ’ Sil’l(‘gg — 1/)3)

and similarly for B” and C"; and

(73) if 1 + e + 103 = 0 (mod 7), then A” = B”" = C" = P (with P as in|Theorem 3.1)),

and (Y1,19,13) are the angular coordinates of P.

(4.1)

Proof. Observe that the point A” has angular coordinates (¢}, 1s,13) for some value 9:
the last two angular coordinates are known by and the construction of A”. It
follows that 1] = —1y — 3. Part (ii) is then established by converting angular to trilinear
coordinates and replacing ¢, with 7 — 65 — 65.

Part (iii) follows immediately from (ii).

Since the ratio [y : £3] is shared by points A" and A” (as in [Eq. (3.1) and [Eq. (4.1)]), it
must be the case that A" and A” are on the same line through A. This is part (i). O

Following a simple lemma, a characterization is now presented of triangles that can be
obtained via the second construction, using the same center of perspective.

Lemma 4.2. Let E,G,H and F be concyclic points, occurring in this cyclic order. Let X
and Y be points such that E,G and X are collinear, F, H and Y are collinear, and the lines
C<J—H) and XY are parallel. Then, £, XY and F' are concyclic points. Conversely, if U and
V' are points such that E,U,V and F are concyclic, E,G and U are collinear, and F, H and
V' are collinear, then ﬁ[ and W/ are parallel.

Proof. AYFE = {HFE = —{EGH = {HGX = —{GXY = —AFEXY. Therefore,
E, XY and F are concyclic. (Euclid’s theorem on cyclic quadrilaterals is used in both
directions.) Also, LGUV = LEUV = —{VFE = —-{HFFE = {EGH = —{HGU. So

and W are parallel. O

Theorem 4.3. Suppose that AA”B"C" can be obtained from the reference triangle AABC),
using the second construction. Let P denote the center of perspective. Suppose that AXY 7 is
another triangle, homothetic to AA”"B"C", with P as the homothetic center. Then AXY Z
can also be obtained from AABC by means of the second construction. Conversely, all
triangles obtainable via the second construction, and having P as the center of perspective,
are related to AA"B"C" in this manner.

Proof. A, B, A", B" are concyclic. A, A", X are collinear, as are B, B, Y, with the two lines
intersecting at P. The lines A"B" and XY are parallel. So by the lemma, A, B, X,Y are
concyclic. Similarly, B, C,Y, Z are concyclic, and C, A, Z, X are concyclic. This reasoning
can be reversed to establish that all triangles obtainable via the second construction, and
having P as the center of perspective, are related to AA” B”C" in this manner. H




Remark 4.4. Let O denote the circumcenter of the reference triangle AABC. In [5], it is
demonstrated that the triangle whose vertices are the centers of Cx, Cy and Cz, is in an
orthological relation with the reference triangle, with P as the orthology center of the latter
with respect to the former, and with O as the orthology center of the former with respect
to the latter. Conversely, given a triangle T" with this orthological relation to the reference
triangle (still using P and O as orthology centers), the vertices of the reference triangle can
be reflected about the corresponding sides of 7' to obtain the vertices of a triangle that is
also obtainable via the construction discussed in this section.

5 Triangles Obtainable via the Two Constructions

The question of whether a given triangle can or cannot be obtained from the reference
triangle by means of one of the two constructions discussed above shall now be considered.
Here we will suppose that we are presented with the homogeneous trilinear coordinates of
the vertices of some triangle. As is customary, we will assume this is presented in the form
of a 3 x 3 matrix with each row providing the trilinear coordinates of a vertex:

gll 612 613
L= ‘€21 622 623
631 €32 633

We wish to know if this is the trilinear coordinates matrix of a KMHK triangle. We know
that any KMHK triangle has the following as its trilinear coordinates matrix:

pP2pP3 P2 P3
M = P11 P3P1 P3
P1 P2 P1pP2

where p; = sin;/sin(6; — 1;), with 6; and ; as before. It is required therefore that
ly90a3031 = lo1l30051. If this is so then the rows of L can easily be rescaled (each row being
multiplied by a scalar) to cause f9; = 31, {12 = {35 and {13 = {53. Assume that this has been
done already. If L is indeed the trilinear coordinate matrix of a KMHK triangle, then it
must equal AM for some scalar A\. But this means that ¢15013/011 = lo1la3/lay = l31032/33.
Converse, if this condition concerning the entries of L is satisfied, then it is straightforward
to see that L is indeed the trilinear coordinates matrix of a KMHK triangle.

We turn now to the question of whether or not L is the trilinear coordinates matrix
of some triangle that can be obtained using the second construction, the one based on
intersecting circles. The approach taken to answering this question differs substantially from
the approach used for the first construction. However, it is again clear that (1509303 =
l91€39013 is still a necessary condition, so we will assume that this is the case. Let O be the
circumcenter of the reference triangle. Let A”, B” and C” be the points having the first,
second and third rows of L as their trilinear coordinates. Essentially following the notation
used in [5], let
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figéig sin ‘91 + 62‘3&1 sin 82 + Eigfig sin 63 1
gil sin 91 -+ gig sin 02 + gig sin 93 &j s

where R is the circumradius of the reference triangle. In [5] it is demonstrated that |ci]
is the distance between O and the center of the circle containing A”, B, C. Similarly, |c;s
is the distance between O and the center of the circle containing A”, C', A, and |cy3| is the
distance between O and the center of the circle containing A”, A, B. Likewise for |co1], |caa]
and |cos] (|esi], |es2| and |ess|) with B” (C") taking the place of A”.

Now, the triangle A” B”"C" is obtained from the triangle ABC' using the second construc-
tion if and only if B, C', B” and C” are concyclic, and C, A, C"” and A” are concyclic, and A,
B, A” and B" are concyclic. This is so if and only if |co1| = |es1], |c32] = |c12| and |c13] = |cos)-
If we divide both sides of these three equations by R, we obtain three equations that can
easily be used to test whether or not L is the trilinear coordinates matrix of a triangle that
can be obtained using the second construction.

6 Relationship with Central Triangles

The center of perspective P used in the two constructions will henceforth be assumed to be
a triangle center for the reference triangle. The trilinear coordinates of the vertices produced
by the two constructions, as presented in Sections 3 and 4, make it clear that the constructed
triangle is a central triangle of type 1, as defined in Chapter 2 of [4]. Recall that this means
that the matrix has the form

fla,b,c) g(b,c,a) g(c,a,b)
g(a, b, C) f(b’ Cy (Z) g(c, a, b)
g(aa b, C) g(b, Cy a) f(C, a, b)

for triangle center functions f and g, where a, b, ¢ are the triangle side lengths. More explic-
itly, f and g must be homogeneous and must be invariant under a swapping of their second
and third arguments.

We now ask, which of the central triangles presented in Chapter 6 of [4] can be obtained
using one of the two constructions? Many of the central triangles there are presented using
a trilinear coordinates matrix that manifests the triangle to be of type 1. These triangles
can be tested immediately using the tests given in the previous section. Most of the other
triangles are presented using a trilinear coordinate matrix whose rows can be rescaled so as
to produce a matrix of the above form. This then shows that the triangle is actually of type
1, and provides a matrix that can be used in the tests in the previous section. The matrices
in Chapter 6 that can be adjusted in this way all have the form

* ,ya//gll /80/,}///
,y/Bla// * 06/8/7”
ﬁ,yla// CY’Y’B” *



where o = a(a, b, c), o/ = d/(a,b,c) and o” = o'(a,b, c) are triangle center functions, and
g = ab,ca),f =d(bca),s" =da(beca),y=alcab),y =d(cab),y =da"(ca,b).
To bring this matrix into the desired form, just divide the first row by o/fFv, divide the
second row by af’y, and divide the third row by af8v’. This yields the following matrix:

x BB Ay
o'fa Ay
Ck”/Oé ﬁ///ﬁ *

Mathematica was used to conduct the tests on the triangles in Chapter 6 of [4]. Cevian
triangles are trivially KHMK triangles, or at least limiting cases of such as the swing angles go
to zero in some fixed proportion. Similarly, circumcervian triangles are trivially examples of
the second construction since their vertices and those of the reference triangle are concyclic.
The triangles in the table on page 198 of [4] are, as stated there, KHMK triangles. Apart
from these, our testing also determined that the excentral triangle (6.7 of [4]), the hexyl
triangle (6.36 of [4]), the half-altitude triangle (6.38 of [4]), and the BCI triangle (6.39 of [4])
are KHMK triangles. For the excentral triangle, the claim is known and it is straightforward
to check that ¢; = (7 —6;) (i = 1,2,3). For the half-altitude triangle, the claim is also
known and it is straightforward to check that taniy; = jtan6; (i = 1,2,3). The facts
concerning the other two triangles are less immediate.

Figure 4: Circles for the excenters and their reflections about the incenter

Skipping the reference triangle itself, and the circumcevian examples, the only other
triangles listed in Chapter 6 of [4] that can be obtained using our second construction are
as follows: the orthic triangle (6.4 of [4]), the excentral triangle (6.7 of [4]), the reflections
of the circumcenter about the reference triangle vertices (6.13 of [4]), and the reflections
of the excenters about the incenter (6.42 of [4]). This fact concerning the orthic triangle
and the excentral triangle are well-known, and indeed they are related since the excentral
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(orthic) triangle of the orthic (excentral) triangle is the reference triangle. exhibits
the situation for the excentral triangle and for the reflections of the excenters about the
incenter. Here [ is the incenter, Jy, Jp, Jo are the excenters, and K4, Kg, Ko are their
reflections about I.

We may deduce that the triangle obtained by reflecting the feet of the altitudes about the
vertices of the reference triangle can also be obtained via the second construction. This is so
since this triangle has the same inverse relationship to the triangle obtained by reflecting the
excenters about the incenter that the orthic triangle has to the excentral triangle (mentioned
above). The triangle whose vertices are the reflected excenters of the reference triangle, has
the reference triangle’s incenter I as its orthocenter. The feet of its altitudes can be seen in
as small dots. The reflection of these about I are just the vertices of the reference
triangle.

Similarly, but rather trivially, the triangle obtained by reflecting the circumcenter about
the reference triangle vertices has the same inverse relation to the triangle obtained from
the reference triangle by taking as vertices the midpoints on the segments connecting the
reference triangle’s circumcenter to its vertices. Therefore, the latter is also an example of a
central triangle obtainable by means of the second construction. Alternatively,
can be used to establish this and similar claims.
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